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A
N IMPORTANT aspect of measurement system

analysis is the assessment of a measurement
system’s precision. The precision of a measurement
system is its consistency across multiple measure-
ments per object. The standard method to assess the
precision of measurement systems that measure on
a metric scale is the gauge R&R method (Burdick
et al. (2003)). This papers deals with the precision
of measurement systems that measure on a categor-
ical scale. Categorical measurements can be nominal
or ordinal (Allen and Yen (1979)). Both ordinal and
nominal data are nonnumeric, and basic mathemat-
ical operations such as subtraction and addition are
not defined. For ordinal scales (such as ‘good’, ‘ac-
ceptable’, ‘bad’) there is a defined order among the
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classes that it consists of. Nominal scales, on the con-
trary, consist of unordered classes (types A, B, C, for
example).

This paper focuses on nominal measurements. A
common example of nominal data in industry are
classifications of production faults into defect types.
Recording for each defect what sort of fault it is
(using a classification system of prespecified types,
such as ‘machine related’, ‘operator related’, ‘mate-
rial related’, etc.), one collects information regarding
which types of faults occur most frequently. Simi-
larly, many companies classify complaints in com-
plaint types, thus recording how frequently the vari-
ous sorts of complaints occur. Classifying complaints
into complaint types (and production faults into de-
fect types) is measurement on a nominal scale. The
‘measurement system’ here is the helpdesk agents
registering the complaints (or the operators filing the
faults) plus the procedure and instructions that they
use to do so. Note that also pass/fail inspection could
be viewed as nominal measurement, and the meth-
ods discussed in this paper could be used to study
their consistency.

To assess the precision of nominal measurements
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(that is, the consistency with which, for instance, de-
fects or complaints are classified), one cannot resort
to the standard gauge R&R method. With its in-
terpretation of measurement precision based on the
concept of standard deviation, it is not applicable to
nominal scales. De Mast and Van Wieringen (2004)
study the problem of measurement system analysis
for ordinal measurements and Van Wieringen (2003)
for binary measurements. This paper focuses on nom-
inal measurements.

A widely applied and often discussed method to
assess the precision of nominal measurements is the
kappa method, or method of agreement. It assesses a
measurement system’s precision in terms of an index
named κ, which was proposed originally by Cohen
(1960). Originating from the fields of medical statis-
tics, psychometrics, and biostatistics, the method has
recently gained in popularity also in the practice of
quality engineering and industrial statistics. It is pre-
sented in the AIAG Measurement System Analysis
Manual (AIAG (2002)), part of the ASQ’s Body of
Knowledge for Six Sigma Black Belts, and included
in software packages such as Minitab.

Upon reviewing the literature on the subject, we
found the accounts that are given in the psychome-
trical and biostatistical literature not to provide a
satisfactory basis for integration of the method in
the industrial statistics and quality engineering sci-
ences. The majority of articles on the method (e.g.,
Cohen (1960), Fleiss (1971), Conger (1980), Davies
and Fleiss (1982)) describe the κ index almost exclu-
sively in terms of sample statistics. They typically
do not provide statistical models for the data, nor
do they define the κ index as a population parame-
ter. Because inferences based on the κ index typically
concern the population and not just the sample, it is
important to understand the sample κ index as an es-
timator for a population κ index. Moreover, ground-
ing the kappa method in sound statistical modeling
would enable the development of more precise defi-
nitions of terminology, concepts, and background as-
sumptions, whereas the current literature abounds
in imprecise formulations and lines of reasoning that
are sometimes rather obscure.

The literature on latent-class models (e.g., Agresti
and Lang (1993)) does provide probabilistic models
for the study of the precision of nominal measure-
ment systems. These models were developed against
the background of cross-tabulations, and they typi-
cally model cell counts, whereas the models we pro-
pose in this paper model individual outcomes of mea-

surements (the Yij in the notation introduced later).
The latter results in probabilistic modeling, which
links up better with the type of models that are used
in the standard gauge R&R method. Furthermore,
papers such as Agresti and Lang (1993) and Schuster
and Smith (2002) focus on estimation of all model pa-
rameters (using the EM algorithm for example) and
they ground inferences about measurement precision
in the estimated parameters. The κ index is, in these
approaches, sidestepped or mentioned briefly at best.
The approach expounded in this paper, to the con-
trary, focuses on the definition and estimation of the
κ index directly, rather than estimation of the model
parameters.

It is the purpose of this paper to integrate meas-
urement-system analysis methods based on agree-
ment and kappa-types indices in the industrial statis-
tics and quality-engineering literature. To do so, we
critically assess the accounts provided by the psycho-
metrical and biostatistical literatures, and in particu-
lar the papers by Cohen (1960), Fleiss (1971), Conger
(1980), and Davies and Fleiss (1982). We aim to pro-
vide a consistent framework, based on sound statisti-
cal modeling, with precise definitions of assumptions
and concepts and clearly described lines of reason-
ing. Moreover, the defined probability models will be
used to study statistical properties of the estimators.
The study of the kappa method from the perspec-
tive of the model that this paper proposes is—to our
knowledge—novel, although Boyles (2001) and Van
Wieringen (2003) use a similar type of model to study
consistency of binary measurement systems.

For means of illustration, we will use an artifi-
cial data set. Suppose we consider classifications of
complaints into five complaint types, which are num-
bered 1, 2, . . . , 5. Note that, although numerals are
used to label categories, this is a nominal scale, and
for that reason, the order among these categories has
no meaning. To study to what extent employees clas-
sify complaints consistently, we could select a sam-
ple of 5 complaints (that is, the transcripts of the
telephone conversation in which the complaint is put
forward). Note that, for the sake of simplicity, the
sample size is smaller than would be the case in a
real precision assessment. Each of these complaints
is presented to and classified by each of six apprais-
ers. The data could look like the ones in Table 1. Be-
cause rows represent the classifications of the same
complaint, minor variation within rows indicates that
the classifications are quite consistent, whereas sub-
stantial variation implies a lack of consistency. The
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TABLE 1. Fictitious Example of an Agreement Study

Appraiser

Complaint 1 2 3 4 5 6

1 1 2 1 1 1 1
2 2 2 2 2 3 3
3 4 4 4 4 4 4
4 2 1 3 1 1 1
5 3 3 3 3 3 3

next sections present a methodology for quantifying
this type of assessment.

Statistical Modeling

In order to assess a measurement system’s preci-
sion, one collects data from an experiment. Experi-
ments for measurement-system analysis have a typi-
cal design: each of a collection of objects i = 1, . . . , n
is measured repeatedly (j = 1, . . . , m). These repe-
titions can be done by the same appraiser (in which
case they are replications, and the assessment gives
the intrarater consistency of the measurement sys-
tem), or once by different appraisers (which gives in-
terrater consistency), or repeatedly by different ap-
praisers (allowing assessment of both intra- and in-
terrater consistency). Returning to this matter in a
later section, we assume an experimental design here
in which each object is measured once by different ap-
praisers. In the case of measurements on a nominal
scale, each object is assigned a value from a finite and
unordered set {1, 2, . . . , a}. The measurement value
that is assigned to object i by appraiser j is denoted
Yij . If one conceives of nominal measurement as the
classification of objects into categories, this value is
the category to which the ith object is assigned by
the jth appraiser.

We propose the following model for the data Yij .
We have n objects, whose true values X1, . . . , Xn we
assume to be in the unordered set {1, 2, . . . , a}. The
Xi are assumed stochastically independent and have
a discrete distribution with parameters

p(k) := P (Xi = k), (1)

where

k = 1, . . . , a, with
a∑

k=1

p(k) = 1.

As for the distribution of the Yij , we assume that,
given an object’s true value Xi, the m measure-
ments Yi1, Yi2, . . . , Yim are stochastically indepen-
dent. Moreover, the distribution of the Yi1, Yi2, . . . ,
Yim depends on the true value Xi, and we define

q(k | �) := P (Yij = k | Xi = �), (2)

thus specifying the distribution of the measurement
errors. The model parameters p(k), k = 1, 2, . . . , a,
and q(k | �), k, � = 1, 2, . . . , a, completely determine
the distribution of the Yij , and we have

P (Yij = k) =
a∑

�=1

p(�)q(k | �) =: q(k), (3)

where q(k) is the marginal distribution. If the con-
cept of true value is thought to be problematic, it
may help that this can be defined without getting
stuck in ontological discussions as follows. The true
value of an object (regarding the property under
study) is the mean value that would be assigned to
the object’s property by an authoritative measure-
ment system (such as the standard meter); see ISO
(1993). The true values are a latent variable that in-
duces a dependence structure in the data Yij . The
true value underlying a categorical scale need not
be categorical. However, if the true values would be
continuous, this would likely induce an order in the
categories, and one would expect an ordinal scale in-
stead of a nominal one. Hence, the assumption that
the underlying property is categorical.

If the repetitions j = 1, . . . , m are replications
(that is, repeated ratings done by the same ap-
praiser), the model defined by Equations (1) and (2)
is the only option, but if repetitions correspond to
measurements done by different appraisers, another
option is to replace Equation (2) with

qj(k | �) := P (Yij = k | Xi = �), (4)

which gives a marginal distribution with probabilities

P (Yij = k) =
a∑

�=1

p(�)qj(k | �) =: qj(k). (5)

We will refer to this model as the heterogeneous ap-
praisers model.

Agreement, Pa and P̂a

Because standard deviation and correlation do not
apply to nominal data, one has to express precision in
terms of alternative concepts. In this paper, we will
express precision of nominal measurements in terms
of a probability of agreement. Two measurements of
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an object agree if they are identical. If a complaint is
classified by two persons, there is agreement if both
times the complaint is given the same classification.
Pagreement (or short: Pa) is the probability that two
arbitrary measurements of an arbitrary object agree.
Under the model specified by Equations (1) and (2),
we have, for an object with true value Xi = �,

Pa(�) := P (Yij1 = Yij2 | Xi = �)

=
a∑

k=1

q2(k | �);

and for an arbitrary object,

Pa := P (Yij1 = Yij2) =
a∑

�=1

a∑
k=1

p(�)q2(k | �). (6)

If one made the assumption that measurement con-
sistency (and thus agreement) is homogeneous across
objects, one would impose that Pa(�) = Pa for � = 1,
. . . , a, but usually this assumption is not made.

The definition of Pa is not given in this form in the
literature. Instead, it (as well as the κ index) is typ-
ically defined as a sample statistic. We demonstrate
that this statistic can be interpreted as an estimator
of Pa. A statistic introduced by Fleiss (1971) is

P̂a =
1

nm(m − 1)

n∑
i=1

a∑
k=1

Nik(Nik − 1)

(Fleiss’s formula (3)), where Nik = {#j : Yij = k}.
This statistic is an unbiased estimator of Pa because

EP̂a =
1

nm(m − 1)

n∑
i=1

a∑
k=1

EPXi
E(Nik(Nik − 1) | Xi)

=
m(m − 1)
nm(m − 1)

n∑
i=1

a∑
k=1

EPXi
q2(k | Xi)

=
1
n

n∑
i=1

a∑
k=1

a∑
�=1

p(�)q2(k | �) = Pa. (7)

For the standard error of P̂a, we have

Var(P̂a) =
1

(nm(m − 1))2

× EVar

(
n∑

i=1

a∑
k=1

Nik(Nik − 1)

∣∣∣∣∣ Xi

)

+
1

(nm(m − 1))2

× VarE

(
n∑

i=1

a∑
k=1

Nik(Nik − 1)

∣∣∣∣∣ Xi

)
= A. + B. (8)

For the second term, we have (defining Mk =
{#i : Xi = k})

B. =
1

(nm(m − 1))2
Var

n∑
i=1

a∑
k=1

m(m − 1)q2(k | Xi)

=
1
n2

Var
a∑

�=1

a∑
k=1

M�q
2(k | �)

=
1
n

a∑
�=1

a∑
k=1

p(�)(1 − p(�))q4(k | �). (9)

The first term equals (see Appendix A)

A. =
1

nm(m − 1)

×
a∑

�=1

a∑
k=1

p(�)(2q2(k | �) + 4(m − 2)q3(k | �)

+ (6 − 4m)q4(k | �))

+
2

nm(m − 1)

×
a∑

�=1

a∑
k=1

a∑
h=k+1

p(�)(6 − 4m)q2(k | �)q2(h | �).

(10)

From the data in Table 1, the probability of agree-
ment is estimated as P̂a = 0.707. This means the
following: Given an arbitrary complaint, there is a
70.7% chance that two arbitrary appraisers give it
the same classification.

Under the heterogeneous appraisers model (Equa-
tions (1) and (4)), one would define PHA

a as the prob-
ability that two arbitrarily selected but different ap-
praisers J1 and J2 agree (with P (J1 = j1) = 1/m
and P (J2 = j2 | J1 = j1) = 1/(m − 1) for j2 �= j1
and 0 for j2 = j1). Thus, we define

PHA
a := P (YiJ1 = YiJ2)

=
2

m(m − 1)

m∑
j1=1

m∑
j2=j1+1

P (Yij1 = Yij2)

=
2

m(m − 1)

×
m∑

j1=1

m∑
j2=j1+1

a∑
�=1

a∑
k=1

p(�)qj1(k | �)qj2(k | �).

(11)

Both Conger (1980) and Davies and Fleiss (1982)
seem to assume this model. They propose an estima-
tor that is identical to our P̂a (Davies and Fleiss’s
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formula (2)). A calculation similar to Equation (7)
shows that, under the model defined by Equation
(4), EP̂a = PHA

a .

Kappa-Type Indices and
Chance Agreement

Thinking about which values of Pa represent
‘good’ measurement systems and which represent
‘bad’ ones, one should realize that a positive value of
Pa does not automatically mean that the measure-
ment system has good precision. Even if appraisers
would assign values to objects randomly, there would
be some agreement. By chance alone, one would ex-
pect better agreement on a two-category scale than
on a five-category one, and this makes it difficult
to interpret values of Pa independent of the used
scale. To deal with this problem, Cohen (1960), Fleiss
(1971), Conger (1980), and numerous others have in-
troduced κ-type indices as a rescaled version of Pa.
The traditional formula is

κ =
Pobserved − Pexpected

1 − Pexpected
.

Here, Pobserved and Pexpected both denote probabil-
ities of agreement. Pobserved is the probability of
agreement for the measurement system under study,
while Pexpected is the probability of agreement for
a ‘chance’ measurement system (that is, a com-
pletely uninformative measurement system that as-
signs measurement values to objects randomly). The
use of the words observed and expected is question-
able here, and we shall instead use in this paper the
more appropriate terminology,

κ =
Pagreement − Pagreement|chance

1 − Pagreement|chance
(12)

(resembling the terminology used by Lipsitz et al.
(1994)).

Whereas the relevant range of Pa is

[Pagreement|chance, 1],

the relevant range of κ-type indices is [0, 1], where 1
corresponds to the agreement that a perfect measure-
ment system would attain and 0 corresponds to the
agreement that random measurements would attain.
The probability of agreement of such random mea-
surements will be denoted Pagreement|chance (or short:
Pa|c). To do this rescaling, we have to define how
we conceive of a chance measurement system (that
is, we have to specify what we mean if we hypoth-
esize about appraisers assigning values ‘randomly’).
Different notions of a chance measurement system

are advocated in the literature, leading to different
rescaling and thus different κ indices. We present the
most current alternatives here and discuss their ben-
efits and drawbacks. Notions of ‘random measure-
ments’ will be defined in the form of chance models,
which describe the behavior of hypothetical ‘chance’
measurement systems and which allow us to define
Pa|c.

Uniform Chance Measurements, P Unif
a|c and

κUnif

A definition going back to Bennett et al. (1954),
and which is advocated by (among others) Brennan
and Prediger (1981), is to define a chance measure-
ment system as one that assigns values to objects
completely at random (meaning: independent of the
object’s true value) and with a uniform distribution,

P (Zij = k) = 1/a (13)

for all k and Zij mutually stochastically independent,
where the Zij denote observations that we would get
from such a measurement system. Based on this con-
ception of a chance measurement system, we define

PUnif
a|c := P (Zij1 = Zij2) =

a∑
�=1

p(�)
a∑

k=1

1/a2

= 1/a,

and substitution in Equation (12) gives

κUnif =
Pa − 1/a

1 − 1/a
. (13)

The version in sample statistics is κ̂Unif = (P̂a −
PUnif

a|c )/(1 − PUnif
a|c ) = (aP̂a − 1)/(a − 1), which is

unbiased and has a standard error that can be eas-
ily calculated from Equation (8). For the example
in Table 1, where a = 5, the probability of agree-
ment that random classifications would obtain is
PUnif

a|c = 1/a = 20.0%. Thus, the measurement proce-
dure’s agreement (Pa = 70.7%, as computed earlier)
is substantially larger than the agreement of random
classifications on a five-point scale. The sample kappa
index is κ̂Unif = (0.707 − 0.200)/0.800 = 0.633.

The value 1/a is a lower bound for Pa for measure-
ment systems for which statistical properties follow
Equations (1) and (2), as can be seen as follows. We
solve a minimization problem in the a(a− 1) param-
eters q(k | �), k = 1, . . . , a − 1; � = 1, . . . , a (given
q(1 | �), . . . , q(a − 1 | �), q(a | �) is fixed, so it is not
a parameter in the minimization problem). For each
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1 ≤ k0 ≤ a − 1 and 1 ≤ �0 ≤ a, we calculate the
partial derivative of Pa with respect to q(k0 | �0) as

dPa

dq(k0 | �0)

= 2p(�0)

(
q(k0 | �0) −

(
1 −

a−1∑
k=1

q(k | �0)

))
.

Equating these to zero, we get, for each �0, the a− 1
equations q(1 | �0) = q(2 | �0) = . . . = q(a − 1 | �0) =
1 −

∑a−1
k=1 q(k | �0). The unique solution is q(k0 |

�0) = 1/a for all k0 and �0. Thus, of all measurement
systems that can be modeled as in Equations (1) and
(2), the one with the lowest Pa is given by P (Yij =
k) = 1/a for all k, which happens to be equivalent to
the chance measurement system defined in Equation
(13), and the corresponding probability of agreement
is Pa = 1/a, which is, of course, identical to PUnif

a|c as
defined above.

Several objections against Equation (13) are
raised in the literature. Scott (1955) states that
“The index is based on the assumption that all cate-
gories . . . have equal probability of use [1/a] by both
[appraisers]. This is an unwarranted assumption [in
many real-life situations]. . . . The phenomena being
coded are likely to be distributed unevenly.” Grant-
ing that this objection sounds convincing at first,
closer scrutiny shows that it is hard to understand
precisely what the argument is. In our notation, Scott
claims that the definition of a chance measurement
system as in Equation (13) would be based on the
assumption that p(�) = 1/a for � = 1, . . . , a (or else,
that it is based on the assumption that the q(k | �)
or q(k) are all equal to 1/a). It should be realized
that a chance measurement system is a hypothetical
concept: appraisers are not really assigning values at
random, we are just hypothesizing what it would look
like if they did, to use this as a reference. In the κ
index, we compare two measurement systems: a real
system with parameters p(�) and q(k | �) (neither
of which is assumed to be distributed uniformly, nor
are the q(k)) and a hypothetical chance system that
is conceived of as having a uniform distribution. In
other words, the uniform distribution is not used to
model the real system under study, but as a notion of
what we understand by ‘random’. One can disagree
that ‘random’ should mean ‘uniformly distributed’,
but one cannot claim that the model in Equation
(13) implies that either the p(�) or the q(k | �) (nor
the q(k)) are uniformly distributed, because that is
neither implied nor assumed.

A second objection made by Scott (1955) is that

adding more categories to the nominal scale results
in a larger value of κ even if these extra categories
are not used by the appraisers. The fact that Pa is
downscaled more for small a than for large a is not
objected to by Scott: “By chance alone, one would
expect better agreement on a two-category than on
a five-category scale”, and the correction of this phe-
nomenon is precisely the purpose of using κ instead of
Pa. But does this create a spurious effect if some cat-
egories are never used? Let us make matters precise.
Suppose we start with a scale having a0 = 2 cate-
gories and that Pa = 0.5. Equation (13) gives that
κUnif = 0, meaning that this measurement system
has a precision comparable to the precision one would
expect from a chance measurement system having
two categories. Now we add three more categories
(a1 = 5), but we assume that these are never used
by the appraisers (that is, q(k | �) = 0 for k ≥ 3).
The same probability of agreement Pa = 0.5 now cor-
responds to κUnif = 0.38. This result can be justified:
Pa = 0.5 on a five-category scale is more precise than
Pa = 0.5 on a two-category scale (because it distin-
guishes on a finer scale), but if this extra precision
is caused by the fact that the measurement system
returns only two categories, this measurement sys-
tem has another problem: its accuracy (or validity)
is poor.

The extreme version of this line of thought per-
haps makes the counterpoint even more clear: con-
sider a measurement system with the following sta-
tistical properties (a = 5):

For all � = 1, . . . , 5:
q(1 | �) = 0.99; q(k | �) = 0.0025

for k = 2, 3, 4, 5 (15)

(i.e., a measurement system that virtually always re-
turns the value 1 independent of the object being
measured). This measurement system is, of course,
useless, and one could be puzzled to find that κUnif =
0.96. But on second thought, the precision of this
measurement system actually is very good: measure-
ment spread is practically nil, and the repeatability
and consistency are almost 100%. The measurement
system has another problem, namely its accuracy (or
validity). The analogue for numerical measurement
systems is the case that a system returns the value
3.1415 (say) independent of the object being mea-
sured. The measurement spread is zero, and hence
the precision is perfect, but its accuracy is poor. The
κ index defined in Equation (13) only measures pre-
cision (or repeatability, reliability, consistency), not
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confounding this aspect with accuracy or other as-
pects of the quality of measurement systems. For
practical purposes, keeping precision and accuracy
separated makes sense.

Assuming the heterogeneous appraisers model
(Equations (1), (4)) we get

κUnif,HA =
PHA

a − 1/a

1 − 1/a
.

Fleiss’s Chance Model, P Fleiss
a|c and κFleiss

The operational definition in Equation (13) of a
chance measurement system is to some extent arbi-
trary, and other definitions are current. Fleiss (1971)
implicitly defines the chance measurement system as
one that follows the model

P (Zij = k) = r(k), (16)

where the Zij are stochastically independent. (Note
that this is our elaboration of Fleiss’s briefly formu-
lated ideas). Under the chance model in Equation
(16), we get

PFleiss
a|c := P (Zij1 = Zij2) =

a∑
k=1

r2(k)

and

κFleiss =
Pa − PFleiss

a|c

1 − PFleiss
a|c

.

This definition of the chance measurement sys-
tem is underdetermined: It specifies a system up to
the parameters r(k), and because the chance mea-
surement system is a hypothetical entity, we cannot
collect data Zij from it to estimate them. Although
Fleiss (1971) does not state so explicitly, the elab-
oration of his approach suggests that the idea is to
equate them to the marginal distribution of the mea-
surement system under study, that is,

r(k) := q(k), k = 1, . . . , a,

and the q(k) can, of course, be estimated from the
Yij . Thus, a chance measurement system is conceived
of as one that classifies objects randomly (indepen-
dent of the objects’ true values) but with a distribu-
tion equal to the marginal distribution of the mea-
surement system under study when it is applied to
the population of objects under study. As an estima-
tor, Fleiss proposes (his formula (5))

P̂Fleiss
a|c =

a∑
k=1

N2
k

(mn)2
,

with Nk = {#(i, j) : Yij = k} and

κ̂Fleiss =
P̂a − P̂Fleiss

a|c

1 − P̂Fleiss
a|c

(Fleiss’s formula (7)). This is the κ index that
Minitab (version 14) computes. From the data in
Table 1, we compute P̂Fleiss

a|c = 0.260 and therefore
κ̂Fleiss = (0.707 − 0.260)/0.740 = 0.604. Note that
P̂Fleiss

a|c is not an unbiased estimator:

EP̂Fleiss
a|c =

n − 1
n

a∑
k=1

q2(k) +
m − 1
mn

Pa +
1

mn
(17)

(see Appendix B) and therefore,

EP̂Fleiss
a|c =

n − 1
n

PFleiss
a|c +

m − 1
mn

Pa +
1

mn
.

Conceiving of random measurements as in Equa-
tion (16) instead of Equation (13) is more natural for
some, and it is a valid option. It simply means that
one uses a different conception of a chance measure-
ment system as a reference. Below we discuss impor-
tant differences in interpretation between κUnif and
κFleiss, providing the reader with enough material to
make up his own mind as to which version he prefers.

Both κUnif and κFleiss depend on the distribu-
tion (p(1), . . . , p(a)) of true values in the population.
There are two distinct reasons for this dependence.
The first reason is that the measurement system is
not necessarily equally consistent for each object. For
this reason, Pa was defined as a weighted average of
the probabilities of agreement given an object’s true
value (Equation (6)). However, if the probability of
agreement were homogeneous (i.e., Pa(�) = Pa for
all �), then one would want a κ index to be inde-
pendent of properties of the population of objects.
This is the case for κUnif , but for κFleiss, there is an
additional dependence on (p(1), . . . , p(a)). Consider
the following example, with a nominal scale of a = 2
categories. A measurement system’s statistical prop-
erties are given by q(1 | 1) = 0.95, q(2 | 1) = 0.05,
q(1 | 2) = 0.05, and q(2 | 2) = 0.95 (the proba-
bility of agreement Pa = 0.91 is quite large). If one
were to study this measurement system on a popu-
lation of objects with distribution p(1) = 0.50 and
p(2) = 0.50, one would find PFleiss

a|c =
∑

q2(k) = 0.50
and κFleiss = 0.81. However, if one studied the same
measurement system on a population of objects with
distribution p(1) = 0.95 and p(2) = 0.05, one would
find PFleiss

a|c = 0.83 and κFleiss = 0.45 (note that
κUnif = 0.81 in both cases). Thus, κFleiss depends
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strongly on p(1) and p(2) (or prevalence, as it is called
in epidemiology) and confounds measurement pre-
cision with properties of the population of objects.
This means that the precision of a measurement sys-
tem is expressed only in relation to a certain popu-
lation of objects.

A second difference between κUnif and κFleiss

comes to light if we apply both procedures to a
measurement system virtually always returning the
value 1 independent of the object being measured
(as defined in Equation (15)). We have shown that
κUnif = 0.96, and the interpretation is that this sys-
tem indeed has perfect precision, but its accuracy is
very poor. But for this system, κFleiss = 0, and we
see that κFleiss confounds precision and accuracy.

What is undeniably an undesirable property of
κFleiss and its estimator κ̂Fleiss is that the relation-
ship between Pa and κFleiss is strongly nonlinear, and
as a result, small changes in Pa can result in dra-
matic changes in κFleiss. For example, assuming a
population of objects with distribution p(1) = 0.95,
p(2) = 0.05 (on an a = 2 point scale), a mea-
surement system with properties q(1 | 1) = 1.0,
q(2 | 1) = 0.0, q(1 | 2) = 0.0, and q(2 | 2) = 1.0 gives
κFleiss = 1.0; but a measurement system with prop-
erties q(1 | 1) = 0.95, q(2 | 1) = 0.05, q(1 | 2) = 0.05,
and q(2 | 2) = 0.95 gives κFleiss = 0.45. The strong
sensitivity of κFleiss for small changes in the q(k | �)
has as a consequence that the standard error of the
estimator κ̂Fleiss may be so large as to make it practi-
cally useless. Suppose, for example, that we measure
n = 100 objects m = 2 times and that the resulting
classifications are (

99 0
0 1

)
.

This table should be read as(
#i : Yi1 = Yi2 = 1 #i : Yi1 = 1, Yi2 = 2

#i : Yi1 = 2, Yi2 = 1 #i : Yi1 = Yi2 = 2

)
.

The given data would result in κ̂Fleiss = 1.0, while(
98 1
0 1

)
would give κ̂Fleiss = 0.66 (the corresponding values of
κ̂Unif are 1.0 and 0.98, respectively). This behavior is
seen by many as leading to results that are difficult to
interpret, and these problems have come to be known
under the name ‘paradoxes of the kappa’ (so called
by Feinstein and Cicchetti (1990), but the depen-
dence of κFleiss on prevalence was described earlier
by Thompson and Walter (1988)).

Conger’s Chance Model, P Conger
a|c and κConger

A form of the κ index that is also commonly used
was defined by Conger (1980) and Davies and Fleiss
(1982). This index is the adaptation of κFleiss to the
heterogeneous appraisers model (Equations (1) and
(4)), and thus uses PHA

a in its numerator. The chance
model is

P (Zij = k) = rj(k)
(Zij stochastically independent). (18)

For given appraisers j1 and j2, we have P (Zij1 =
Zij2) =

∑a
k=1 rj1(k)rj2(k). For randomly selected j1

and j2, we have

PConger
a|c =

2
m(m − 1)

m−1∑
j1=1

m∑
j2=j1+1

a∑
k=1

rj1(k)rj2(k)

(which is equivalent to the definition of Davies and
Fleiss). As the model in Equation (16), also the
model in Equation (18) is underdetermined. As be-
fore, the parameters of the chance measurement sys-
tem are related to the marginal distribution of the
measurement system under study: rj(k) := qj(k) (see
Equation (5)). We have

κConger =
PHA

a − PConger
a|c

1 − PConger
a|c

.

As an estimator for PConger
a|c , Davies and Fleiss (1982)

propose (their formulas (3) and (4))

P̂Conger
a|c =

2
m(m − 1)

m∑
j1=1

m∑
j2=j1+1

a∑
k=1

Lj1k

n

Lj2k

n

(for each j and k: Ljk = {#i : Yij = k}). It is a
biased estimator:

EP̂Conger
a|c

=
n − 1

n
PConger

a|c

+
1
n

m∑
j1=1

m∑
j2=j1+1

a∑
k=1

a∑
�=1

p(�)qj1(k | �)qj2(k | �)

(see Appendix C). Davies and Fleiss’s κ index is de-
fined as

κ̂Conger =
P̂a − P̂Conger

a|c

1 − P̂Conger
a|c

.

It has P̂a in its numerator because, under the hetero-
geneous appraisers model (Equations (1) and (4)),
EP̂a = PHA

a (see below, Equation (11)).
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From the data in Table 1, we get P̂Conger
a|c = 0.251

and therefore κ̂Conger = (0.707 − 0.251)/0.749 =
0.609. Note that, for m = 2, κ̂Conger reduces to the
original definition of the κ index by Cohen (1960).
Besides being applicable only if the repetitions j = 1,
. . . , m relate to the levels of a factor and are not just
replications, the qualifications made about the be-
havior of κFleiss apply to κConger as well.

Intra- and Interrater Agreement

So far, we have studied the analysis of experiments
in which each object is measured once by different
appraisers, allowing the estimation of interrater con-
sistency. Here we discuss briefly how to proceed in the
situation that each object is measured s ≥ 2 times
by each of m ≥ 2 appraisers. The data are denoted
Yijh, i = 1, . . . , n; j = 1, . . . , m; h = 1, . . . , s. For the
true values Xi, the model in Equation (1) is retained.
The data are now modeled as

qj(k | �) := P (Yijh = k | Xi = �).

For each of the m appraisers, we can define a proba-
bility of agreement, namely,

Pa,intra(j) := P (Yijh1 = Yijh2)

=
a∑

�=1

a∑
k=1

p(�)q2
j (k | �).

The probability that a randomly selected appraiser
agrees with himself can be defined as follows. Let J
be the randomly selected appraiser, and let P (J =
j) = 1/m for all j, then

Pa,intra := P (YiJh1 = YiJh2)

=
1
m

m∑
j=1

a∑
�=1

a∑
k=1

p(�)q2
j (k | �),

which could be interpreted as intrarater agreement.
It can be estimated (unbiasedly) by

P̂a,intra

=
1

mns(s − 1)

m∑
j=1

n∑
i=1

a∑
k=1

Nik(j)(Nik(j) − 1),

with Nik(j) = {#h : Yijh = k}.

Interrater agreement is the probability that two
different appraisers agree. For two randomly selected
but different appraisers J1 and J2, we have

Pa,inter

:= P (YiJ1h1 = YiJ2h2)

=
2

m(m − 1)

m∑
j1=1

m∑
j2=j1+1

P (Yij1h1 = Yij2h2)

=
2

m(m − 1)

×
m∑

j1=1

m∑
j2=j1+1

a∑
�=1

a∑
k=1

p(�)qj1(k | �)qj2(k | �),

which could be estimated (unbiasedly) by

P̂a,inter =
2

m(m − 1)ns2

×
n∑

i=1

m∑
j1=1

m∑
j2=j1+1

a∑
k=1

Nik(j1)Nik(j2).

Rescaling to correct for chance agreement, one could
define κ-type indices along the lines discussed earlier.
Furthermore, one could consider defining an overall
κ index based on

Pa,overall = P (J1 = J2)Pa,intra + P (J1 �= J2)Pa,inter.

Discussion and Conclusion

The current literature in quality engineering on
methods for the assessment of precision of nominal
measurements is limited. In the biostatistical, medi-
cal, and psychometrical sciences, to the contrary, the
literature on this subject is extensive and can be used
as a basis for the development of methods suitable
for quality engineering. This paper critically reviews
methods based on agreement and κ-type indices, and
especially the model-based development in this paper
is new.

Nominal scales are equipped with only the sim-
plest arithmetical operations and relations, such as
equivalence (‘=’). For this reason, it is hard to imag-
ine that metrics for precision of nominal measure-
ments can be based on concepts that are substan-
tially more advanced than agreement. Whether and
how Pa should be rescaled, however, is a more con-
troversial matter.

Whether one finds the logic underlying κUnif , or
κFleiss and κConger, convincing or not, an equally im-
portant angle is to look at the effects of either defi-
nition. The first important difference is that PFleiss

a|c
and PConger

a|c are based on a property of the popula-
tion of measured objects. This makes the rescaling
that κFleiss and κConger apply specific for a popula-
tion of objects. The adjustment applied in κUnif only
depends on properties of the measurement system
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under study (namely its scale). Second, κUnif sepa-
rates precision from issues related to a measurement
system’s accuracy, while these issues are confounded
in κFleiss and κConger.

The account so far has focused on explication
and clarification of prevailing ideas and approaches
in the literature, less emphasizing the evaluation of
these ideas. We hope that this account enables the
industrial-statistics and quality-engineering sciences
to study these ideas effectively and develop their own
approaches. In this final section, we discuss what we
think will work in the context of quality technology.

The problem with many indices for precision is
that, although the extreme values have a clear in-
terpretation, the intermediate values are less clearly
translated into real-life implications. This makes the
question of how large or small an index for precision
should be in order to indicate an acceptable measure-
ment system hopelessly arbitrary. Turning to the κ
index, it is especially Pa (more than κ itself) that
is easily interpretable in real-life terms: the chance
that repeated measurements are identical is quite a
tangible expression of precision. Normalizing Pa into
a κ index turns it into a more abstract number. For
that reason, we would prefer to assess a measurement
system’s precision in terms of two numbers: Pa, be-
cause it is a tangible quantity, and PUnif

a|c (or, if that

is one’s preference, PFleiss
a|c or PConger

a|c ) to have a ref-
erence. Even if one combines these two in a single
index, we would recommend reporting the interme-
diate results Pa and Pa|c as well.

The kappa/agreement method originates in the
methodology of diagnostic tests. Sensitivity and
specificity are two other concepts that are frequently
used to express the useability of these tests. They are
defined as (see, for instance, Ingelfinger et al. (1983))

Sensitivity
= P (positive diagnosis | disorder is present)

Specificity
= P (negative diagnosis | disorder is not present).

Agreement and sensitivity/specificity do not address
identical issues. Agreement is a measure exclusively
for precision. Sensitivity and specificity combine pre-
cision and accuracy: sensitivity and specificity can be
poor due to poor precision, poor accuracy, or a com-
bination of both. More in general, we are in favor of
evaluating a measurement’s precision and accuracy
separately. Therefore, we would ourselves not use in-
dices that confound these two aspects. This is one of

the reasons why we would prefer κUnif to κFleiss or
κConger.

Appendix A

Let (N1, N2, . . . , Na) have a multinomial (m; q1,
q2, . . . , qa) distribution. Then

Var(Nk(Nk − 1))
= 2m(2)q2

k + 4m(3)q3
k +

(
m(4) − m(2)m(2)

)
q4
k,

because the lower moments of the multinomial dis-
tribution are

ENk = mqk

EN2
k = mqk + m(2)q2

k

EN3
k = mqk + 3m(2)q2

k + m(3)q3
k

EN4
k = mqk + 7m(2)q2

k + 6m(3)q3
k + m(4)q4

k.

Furthermore, we have

Cov(Nk(Nk − 1);Nh(Nh − 1))

= EN
(2)
k N

(2)
h − m(m − 1)q2

hEN
(2)
k

− m(m − 1)q2
kEN

(2)
h + m2(m − 1)2q2

kq2
h

= (m(4) − m(2)m(2))q2
kq2

h,

because (mixed factorial moments)

E(N (r1)
1 · · ·N (ra)

a ) = m(
∑

ri)qr1
1 · · · qra

a .

Combing these results, we get

E
n∑

i=1

Var

(
a∑

k=1

Nik(Nik − 1)

∣∣∣∣∣ Xi

)

= E
n∑

i=1

a∑
k=1

Var(Nik(Nik − 1) | Xi)

+ 2E
n∑

i=1

a∑
k=1

a∑
h=k+1

Cov
(
Nik(Nik − 1);

Nih(Nih − 1)
∣∣Xi

)
=

n∑
i=1

a∑
k=1

E
(
2m(2)q2(k | Xi)

+ 4m(3)q3(k | Xi)

+ (m(4) − m(2)m(2))q4(k | Xi)
)

+ 2
n∑

i=1

a∑
k=1

a∑
h=k+1

E(m(4) − m(2)m(2))

× q2(k | Xi)q2(h | Xi)

= nm(2)
a∑

�=1

a∑
k=1

p(�)
(
2q2(k | �)

+ 4(m − 2)q3(k | �)
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+ (6 − 4m)q4(k | �)
)

+ 2nm(2)
a∑

�=1

a∑
k=1

a∑
h=k+1

p(�)(6 − 4m)q2(k | �)

× q2(h | �).

Appendix B

EP̂Fleiss
a|c

=
1

m2n2

a∑
k=1

n∑
i1=1

n∑
i2=1

ENi1kNi2k

=
1

m2n2

×
a∑

k=1

n∑
i1=1

n∑
i2=1
i2 �=i1

a∑
�1=1

a∑
�2=1

p(�1)p(�2)

× E(Ni1kNi2k |
Xi1 = �1, Xi2 = �2)

+
1

m2n2

a∑
k=1

n∑
i=1

a∑
�=1

p(�)E(N2
ik | Xi = �)

=
n − 1

n

a∑
k=1

a∑
�1=1

a∑
�2=1

p(�1)p(�2)q(k | �1)q(k | �2)

+
1

mn

a∑
k=1

a∑
�=1

p(�)
(
q(k | �) + (m − 1)q2(k | �)

)
=

n − 1
n

a∑
k=1

q2(k) +
m − 1
mn

Pa +
1

mn
.

Appendix C

Defining

Nijk =
{

1, if Yij = k
0, if Yij �= k

,

we have
m(m − 1)

2
EP̂Conger

a|c

=
1
n2

m∑
j1=1

m∑
j2=j1+1

a∑
k=1

n∑
i1=1

n∑
i2=1

ENi1j1kNi2j2k

=
1
n2

∑
j1,j2,k,
i1 �=i2

a∑
�1=1

a∑
�2=1

p(�1)p(�2)E(Ni1j1kNi2j2k |

Xi1 = �1, Xi2 = �2)

+
1
n2

m∑
j1=1

m∑
j2=j1+1

a∑
k=1

n∑
i=1

a∑
�=1

p(�)E(Nij1kNij2k |

Xi = �)

=
n − 1

n

∑
j1

∑
j2

∑
k

∑
�1

∑
�2

p(�1)p(�2)qj1(k | �1)

× qj2(k | �2)

+
1
n

∑
j1

∑
j2

∑
k

∑
�

p(�)qj1(k | �)qj2(k | �)

=
n − 1

n

∑
j1

∑
j2

∑
k

qj1(k)qj2(k)

+
1
n

∑
j1

∑
j2

∑
k

∑
�

p(�)qj1(k | �)qj2(k | �).
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