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T
HE DISTINCTION between exploratory and confir-
matory data analysis is mostly attributed to

Tukey (1977). As Tukey pointed out, confirmatory
data analysis (CDA) is concerned with testing a pre-
specified hypothesis. For instance, if an inquirer sus-
pects that certain factors have an effect on a char-
acteristic, he could collect experimental or observa-
tional data, estimate the parameters in a regression
or other model, and calculate p-values, thus establish-
ing which factors have an effect and modeling the re-
lationship. But before a CDA can get off the ground,
the inquirer must know which data to collect, and
for that he must know which hypothesis he is willing
to investigate. For instance, before the inquirer can
design an experiment to investigate the effects of cer-
tain factors, he must have identified these factors in
the first place.

Hypothesis generation is a different functionality
than hypothesis testing and estimation. There are a
number of approaches to generate hypotheses, such
as brainstorming, making an inventory of process
know-how, and exploiting suggestions from analo-
gous problems (De Mast and Bergman (2006) give an
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overview). Exploratory data analysis (EDA), during
which data are screened for clues, is one of these ap-
proaches. Where estimation, modeling, and hypoth-
esis testing could be said to be the purpose of CDA,
hypothesis generation is the purpose of EDA.

Having contrasted EDA with CDA, to delineate
the subject more clearly, we contrast both CDA and
EDA with descriptive data analysis (DDA), the sum-
mary of a dataset in a number of descriptive statis-
tics. DDA is concerned with the presentation of data
to reveal salient features. This is done by suppressing
uninformative features of the data so as to make the
important features stand out more clearly. The sum-
mary of a dataset in a number of summary statistics,
such as average and standard deviation, is a mat-
ter of pruning simply because dealing with the full
complexity of the dataset is far beyond human cogni-
tive abilities. Also, the use of tables and graphs and
other descriptive statistics is designed to match the
salient features of a dataset to human cognitive abili-
ties (Good (1983)). EDA goes somewhat further than
descriptive statistics in that its aim is not merely to
present salient features of a dataset, but in addition
to speculate and formulate hypotheses that have the
potential to explain these salient features. CDA goes
further than DDA because it goes beyond summary
statistics (which give information about the sample)
to estimates, models, or predictions for a target pop-
ulation.
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The literature on EDA is less elaborate than the
literature on CDA, both in pure volume of texts de-
voted to the subject and in precision and depth of
its theoretical development. Good (1983) speculates
that “. . . perhaps EDA is more an art, or even a
bag of tricks, than a science.” But yet, we have to
teach this art to practitioners. It is the purpose of
this article to develop a number of explicated prin-
ciples for EDA that can be taught to practitioners
and statisticians to help them master this art faster
(or at least to provide them with a better ordered
bag of tricks). The empirical basis for our theories is
formed by a review of a large number of applications
of EDA from our consulting experience. Our study
design is not very formal, but rather exploratory. The
majority of EDA examples were part of Six Sigma
quality-improvement projects and were conducted by
Black Belts supported by experienced statisticians.
Furthermore, we have drawn from examples of EDA
published in the literature. Studying how EDA is per-
formed in practice and by reconstructing the line of
reasoning and the goals, we identified a number of
principles, A–D, which form a prescriptive framework
for EDA. We discuss these principles in the next sec-
tions. They are presented on the basis of a represen-
tative sample of the real-life EDA applications that
we studied. In presenting these case studies, we sim-
plified in some cases the account to some extent for
reasons of clarity and brevity.

Throughout the paper, the subject of study is
limited to EDA applications in quality-improvement
projects (see De Mast (2003) for a framework of qual-
ity improvement based on statistical methods). We
have in mind datasets of a relatively small scale (say,
some 25 to a couple of thousand observations), where
EDA is done by the inquirer with the help of ele-
mentary statistics software (as opposed to the large
volumes of data that make the use of data-mining
techniques a necessity).

The Purpose and Process of EDA

De Mast and Bergman (2006) place EDA in the
wider context of hypothesis generation from the
viewpoints of philosophy of science (discovery), arti-
ficial intelligence (problem solving), and the medical
sciences (diagnosis). They conclude that guidelines
for hypothesis generation should not consist of algo-
rithms, but should have the form of heuristics. This
implies that EDA is informal (that is, reasoning does
not methodically follow codified rules), flexible (there
is no preconceived plan; instead, the path of inves-
tigation emerges in an interaction between inquirer

and data), and speculative (pursuing hypotheses that
have potential, not hypotheses that are true).

Before discussing the process of EDA, we address
its purpose. The aims of EDA are described in the lit-
erature in phrases such as “to generate hypotheses”,
“to generate clues”, “to discover influence factors”,
and “to build understanding of the nature of the
problem”. Problem solving in the paradigms of sta-
tistical thinking and statistical improvement strate-
gies (such as Six Sigma; De Mast (2003)) requires
that the problem be parameterized. This means that
problems are framed in terms of variables (called
CTQs, Y s, or KPIs in Six Sigma and other ap-
proaches) and likewise are the causes (Xs, sources
of variation, influence factors). The study centers
around potential relationships among these variables.
Our first principle of EDA formulates this Purpose.

A. The purpose of EDA is the identification of
dependent (Y -) and independent (X-)variables that
may prove to be of interest for understanding or solv-
ing the problem under study.

Note that, thus defined, EDA is understood to be
only a part of the Data-analysis movement as pro-
moted by Tukey (see Mallows (2006) for a recent dis-
cussion). Data analysis seems to cover all of applied
statistics in general and is much wider than EDA.

One could symbolize EDA’s pursuit as follows.
The data are taken to be the sum of a number of
components,

Y = Y1 + Y2 + Y3 + · · · + Yk, (1)

or the aggregate of the effects of a large number of
causes,

Y = E1 + E2 + E3 + · · · . (2)

In the second situation, the data are seen as the re-
sult of a number of causal effects, where each Ei

is the effect of a single or several causal factors,
Ei = f(Xj1, Xj2, . . . , Xjn), and the inquirer wishes
to discover these X’s.

In the first situation (Equation (1)), the data are
taken to be the sum of a number of components. For
example, the total number of scrap parts per week
(Y ) could be decomposed as a sum of weekly scrap
parts per product type (Y1, Y2, . . . , Yk) or as a sum of
scrap parts per production line. Likewise, if the data
are throughput times, these could be decomposed
into a sum of throughput times per process step. Es-
pecially when the inquirer has not yet a clear and
focused parameterization of the problem he studies,
he could apply EDA to find such a decomposition,

Journal of Quality Technology Vol. 39, No. 4, October 2007



EXPLORATORY DATA ANALYSIS IN QUALITY-IMPROVEMENT PROJECTS 303

FIGURE 1. Defects Per Work Station.

which could help him better understand and focus
the problem. The first example below illustrates the
use of EDA to identify interesting Y variables, while
the second example shows how EDA is used to dis-
cover X variables.

Example 1: Defect Reduction on an Assembly
Line

This case is taken from Bisgaard (1996). An as-
sembly line for motors produced an unacceptably
high number of defective motors. Extensive records
on scrap were available, but only after encourage-
ment from an external consultant were these data
studied. Presented in the form of tables, these data
conveyed little useful information. Pareto charts cat-
egorizing the defects by type proved interesting. But
it occurred to the improvement team that it would be
even more interesting to categorize defects according
to which of the 10 work stations on the assembly line
the defects originated from. The team invested time
in tracing defects to their sources, and thus managed
to produce the Pareto chart in Figure 1. The large
number of defects originating in station IX catches
the eye. Discussion with the operator on station IX
brought to light that major changes in the design
of the motors had resulted in considerably more op-
erations to be performed on station IX. Moreover,
the layout of the workstation had not been adjusted
to the new operations and was no longer efficient.
Thereupon, workstation IX was redesigned, and sev-
eral operations performed at that station were moved
to station VIII.

The input for EDA were the data on defects. A
categorization by defect type did not result in in-
teresting discoveries, but a categorization by work-

FIGURE 2. Distribution of Eccentricity of Pins on Cell-

phone Components.

station helped focus the problem: the problem was
reframed from “too many defects” to “too many de-
fects from station IX”. Thus, EDA helps go from
a broad problem description (aggregating many dif-
ferent issues and aspects) to a focused description
of the problem (pinpointing the one or a few issues
that dominate the others). Given this focused prob-
lem definition, the causes and solution were easily
found (but by other means than EDA).

In this case, EDA helped identify potentially inter-
esting Y -variables (as symbolized in Equation (1)).
The second case study illustrates how EDA helps
identify X-variables.

Example 2: Eccentricity of Pins on Cellphone
Components

A quality-improvement project aimed to reduce
the eccentricity of pins on components of cellphones.
The histogram in Figure 2 shows the distribution of
125 measurements (where eccentricity is measured
as an absolute deviation from the center). The data
were collected during outgoing quality inspection.
The project leader recognized the bimodality of the
distribution, conjectured that the data could be in-
terpreted as stemming from two populations, and
consulted the operators whether they knew what
caused the distinction in two populations. The op-
erators conjectured that the two groups might cor-
respond to the two different molds that were used
in the injection molding process that produced the
components. It was not possible to trace which data
points corresponded to which mold, but a new data
collection confirmed the hypothesis that the two
molds gave deviating results. The result of the EDA
in this case is the identification of potential causal
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influence factors, namely the influence of properties
of the molds.

The identification of the variables into which the
data decompose (the Yi) or the variables that deter-
mine the causal structure underlying the data (the
Xi) is the purpose of EDA. EDA seeks to do so by
studying FY , the distribution of Y (or in practice: a
realization of FY ). Note that this implies that EDA
can identify only variables that are associated to vari-
ance components of the distribution of the data Y .
Put more simply: only factors that actually vary dur-
ing data collection can be identified with EDA. Fac-
tors that remain constant during data collection (ma-
chine settings, for instance) leave no traces in the
data and must be identified using procedures other
than EDA (De Mast and Bergman (2006)).

In the process of EDA, three steps can be dis-
cerned:

1. Display the data.

2. Identify salient features.

3. Interpret salient features.

In Example 2, for instance, the inquirer made
a histogram (display the data), recognized the bi-
modality (identify salient features), and conjectured
with the operators that properties of the molds could
explain the bimodality (interpret salient features).
The next sections discuss the principles that apply
to these steps.

Display the Data

The first step in EDA is to display the data in such
a way that we can maximally exploit the pattern-
recognition capacities of our brains. This pursuit is
explicit in the work of Chernoff (1973), who uses
drawings of faces to represent multidimensional data;
Ehrenberg (1981), who gives guidelines for adapt-
ing tables to the perceptive capabilities of humans;
Cleveland and McGill (1984); and others. Many au-
thors (Good (1983), Hoaglin et al. (1983), Bisgaard
(1996)) have claimed that graphical presentations are
to be preferred in ED, because they have the power
to reveal to the inquirer what he did not expect to
see beforehand. The information in the data that is
relevant for EDA is contained in their distribution.
Graphical presentations tend to show the data’s dis-
tribution in a way that human brains can handle. A
table of the raw data, to the contrary, is too com-
plex for human brains, whereas tables of aggregate
statistics eliminate (components of) the data’s dis-
tribution, thereby losing information that is poten-

tially crucial for EDA. Note how, in both Figures 1
and 2, the relevant information in the data is cap-
tured in their distribution. Especially in Example 2,
summary statistics (mean, standard deviation, quar-
tiles, etc.) would not have brought across the salient
feature as powerfully as the histogram. Alternatively,
the inquirer could have studied a plot of the empir-
ical cumulative distribution function (an ogive, or a
probability plot; see Snee and Pfeifer (1988)). Our
second EDA principle is as follows.

B. Display the data such that their distribution is
revealed.

Often, the data are not just Y -data, but have an
additional structure, such as strata or a time order,
as is illustrated in Example 3.

Example 3: Throughput Time of Invoicing
Process

Figure 3 is from a project aiming to reduce the
throughput time of an invoicing process. The project
leader collected throughput times from each of the
five sites where the process is executed and made the
box plots in the figure. Noting the large differences
between the distribution of the throughput times in
the five sites, he compared the procedures used at the
various sites. He noticed that the poorly performing
sites processed invoices in batches (once per 15 days),
whereas the better performing sites process invoices
in smaller batches or even immediately.

Note that the results of EDA sometimes appear
trivial: is it not obvious that processing invoices in
batches every 15 days leads to long throughput times

FIGURE 3. Throughput Times of Invoicing Process by

Site.
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(as follows from the principles of Lean, for instance)?
But the fact that discoveries seem trivial in retro-
spect should not be a reason to dismiss such analyses
as superfluous. Often, assumptions are completely
taken for granted and the inquirer’s mind has be-
come conditioned. Blindness for the obvious is the
result. The usefulness of simple tools consists in part
of their power to force the obvious even onto a mind
that is not open for it.

The case shows that the strata in the data set
(sites) play an important role in the way the data
are displayed. This can be understood by observing
that these strata act as a sort of “container vari-
able”, which confounds the effect of many variables
the values of which coincide with the stratum levels.
As a result, the space of all variables is split into a
class of variables that only vary between groups and
a class of variables that also vary within groups. We
formulate this as a refinement of principle B.

B1 (Stratified Data). Display the data such that
both their within-stratum and across-stratum distri-
butions are revealed.

Suitable options include box plots per stratum and
individual value plots. A similar consideration shows
us that also time order can play this role of container
variable, confounding the effects of many variables.

B2 (Data Plus Time Order). Display the data
such that their distributions within time intervals and
across time are revealed.

If a single datum per time unit is available, a time-
series plot (and Derivatives, such as the individuals
control chart) is the main technique to use. If a sam-
ple is collected on each time unit, a box plot (Iglewicz
and Hoaglin (1987)) or an individual value plot per
time unit are preferred to the (X, R)-control chart
because the latter does not show the distribution
within time units.

In case one deals with multivariate (especially
high dimensional) data, one needs another refine-
ment.

B3 (Multivariate Data). Project the data onto a
2- or 3-dimensional subspace and display the data’s
distribution over this subspace.

If the identification of salient features is to be done
by the inquirer (and not by an automatic procedure),
the projection of the data onto a low-dimensional
subspace is a necessity in order that human percep-
tion can cope with them. The distribution of the data

over the low-dimensional subspace can be visualized
by a scatter plot or a contour plot of the empirical
density. Several procedures are available to find suit-
able projections.

• Principal components analysis (and related
procedures, such as factor analysis and clus-
ter analysis applied to variables): can be used
to find suitable 2- or 3-dimensional subspaces
on which to project the data. These subspaces
are spanned by linear combinations of the orig-
inal axes of the data space. Principal compo-
nents analysis selects a subspace onto which to
project the data such that the proportion of
total variation accounted for by the projected
data is maximal.

• Projection pursuit: helps find 2- or 3-
dimensional subspaces onto which to project
the data, in such a way that salient features in
the data are maximally preserved. Projection
pursuit does so by selecting from the set of all
possible projections the one that maximizes an
index of “interestingness”. The original index
of interestingness proposed by Friedman and
Tukey (1974) was designed to reveal cluster-
ing. More general indices relate interestingness
to nonnormality or minimal entropy (based on
similar argumentation, as we will give below for
our principle C); see Huber (1985) and Jones
and Sibson (1987).

Identify Salient Features

Having displayed the data such that their distri-
bution FY is revealed, the second step of EDA is to
identify features and properties of FY that are salient
(such as the bimodality in Figure 2). To provide in-
quirers with heuristics that have practical value, we
must give the term salient operational meaning. Be-
low we substantiate the following principle.

C. Assuming a neutral reference distribution, look
for deviations from this reference distribution.

We provide two heuristics to define such a neutral
reference distribution. The first is Shewhart’s theory
of assignable causes of variation. The basic princi-
ple for their identification was formulated by him as
“. . . our clue to the existence of assignable causes
is anything that indicates nonrandomness” (Shew-
hart (1939), p. 26). This statement is based on a line
of reasoning that is expounded in Shewhart (1931,
pp. 121–162). If variation is the aggregate effect of
a constant system of causes, none of which predom-
inates the others, the variation will have a normal
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distribution. Such variation does not give clues for
the identification of variables. If one of the causes
of variation is dominant, it is an assignable cause,
which means that it may leave traces in the data (in
the form of deviations from normality) that enable
its identification.

Unraveling this line of reasoning, the steps in the
argumentation are:

• The data are an additive aggregate of effects
(as in Equation (2)).

• Addition of effects dilutes the individual effects
(which we seek to identify).

• Addition of effects results in a more and more
normal distribution (because, by central limit
theory, the convolution of two distributions is
closer to normal than the least normal of the
original distributions).

• Thus, normality is seen as a byproduct of dilu-
tion of effects through addition, and the heuris-
tic says that if FY is normal, it is typically un-
informative for the identification of underlying
effects.

(The last two steps in this argumentation resemble
Huber’s (1985, Section 5) line of reasoning in a simi-
lar context). Typical deviations from normality that
an inquirer encounters are bi- or multimodality (cor-
responding to clusters and outliers in the data) and
discontinuities in the density function (corresponding
to edges in histograms and scatterplots). We formu-
late our heuristic as follows.

C1. Look for deviations from normality.

The central limit theorem plays an important
role in associating normality to dilution of effects.
A principle that is not based on the central limit
theorem and that is more generic is based on in-
formation theory. Following the line of reasoning of
Shannon (see Berger (1988)), the uncertainty repre-
sented by a probability density f(x) is its entropy
H(f) = −

∫
log f(x)dF (x) = −E log f(x). The con-

cept of entropy is used in various manners in contexts
related to hypothesis generation: as a basis for prior
distributions in Bayesian pattern discovery (Brand
(1999)), as an index of “interestingness” in projec-
tion pursuit (Jones and Sibson (1987)), and in the
“maximum entropy principle” (Jaynes (1957), Good
(1963), and Bard (1988)). This last principle can be
described as follows.

Suppose that an inquirer has some information
about the distribution of a variable, perhaps one or

a few moments, and possibly that it is nonnegative.
The maximum entropy principle tells the inquirer in
that case to assume the probability distribution f
that has maximal entropy H(f) among all distribu-
tions satisfying the constraints posed by the infor-
mation on moments and its support. For a discrete
distribution (p1, p2, . . . , pk) with a finite number k
of values, the maximum entropy distribution is the
uniform distribution pi = 1/k for i = 1, . . . , k. The
real-valued maximum entropy distribution under the
constraints that EX = µ and E(X − µ)2 = σ2 is
the normal distribution. For nonnegative distribu-
tions under the constraint that EX = µ, one finds
the exponential distribution. The maximum entropy
principle produces the most ‘neutral’ choice of dis-
tribution, in the sense that it is the uniquely maxi-
mally noninformative distribution that is consistent
with the known constraints (where ‘noninformative’
is based on the information theoretic definition of
information as −H(f)).

The relevance for EDA is that this principle pro-
vides the inquirer with a neutral reference distribu-
tion (such as the normal or exponential distribu-
tion, depending on the situation). If the distribution
FY of the data deviates from this reference distri-
bution, this is interesting because it means that FY

has a smaller entropy than the reference distribution,
suggesting that FY contains more information than
just the information about the support and first mo-
ments. Alwan et al. (1998) use this idea to develop an
information theoretic framework for statistical pro-
cess control. They provide neutral reference distri-
butions for a number of situations, and they mea-
sure deviation from this reference distribution by the
Kullback–Leibler function (see Alwan et al. (1998)).

C2. Assuming a neutral reference distribution (in
the sense of maximum entropy), look for deviations
from this reference distribution.

Note that heuristics C1 and C2 are equivalent in
the case of real-valued data with known (or esti-
mated) first two moments, be it that they are based
on essentially different lines of reasoning. Note also
that both principles are heuristics and not algo-
rithms. There is no intrinsic reason that they should
work and, in fact, many deviations from normality
or the maximum entropy distribution will not be in-
formative.

In case the dataset has more structure than just
1-dimensional Y -data (strata, time order, multiple
dimensions), one needs a number of refinements to
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principle C. These refinements are based on the idea
that the neutral reference case implies that the data
are independent and identically distributed (i.i.d.)
across strata, time, and against variables.

C3 (Data Plus Time Order). Look for deviations
from i.i.d.

The principle is illustrated from the following ex-
ample.

Example 4: Excessive Variation in a Cutting
Process

This case, presented in detail in Bisgaard (1988),
concerns a process in which products are conveyed
to a knife by a belt. The project tackled the prob-
lem of excessive variability in the distance between
individual products, which resulted in deviations in
the dimensions of the cut products. A factorial ex-
periment did not result in breakthroughs because the
studied factors had no relevant effects. But residual
plots showed that the distance between products has
a cyclical pattern in time. After much but fruitless
detective work, the breakthrough came from the au-
tocorrelation function, which showed that the cycle
has a period of 40 or 80. One of the operators hypoth-
esized that perhaps the number of products on one
loop of the conveyer belt is 80. This led to studying
the belt in more detail. Subsequent experimentation
proved that the belt was the cause of the problem
and, in particular, the belt’s flexibility.

The i.i.d. situation is taken as the neutral refer-
ence. Deviations from i.i.d. indicate that the data are
potentially informative for EDA purposes. As stated
before, time acts as a container variable, confound-
ing the effects of many X-variables that change over
time, but were not measured. Deviations from i.i.d.
could have the form of one or a few change points
(such as jumps in the mean) or of a continual evolu-
tion (a trend, or cyclical patterns). The next principle
is the analogue for the situation of stratified data.

C4 (Stratified Data). Look for between-strata dif-
ferences in distribution.

Example 3 (Throughput time of invoicing process)
illustrates the principle. The next refinement of prin-
ciple C. reads as follows.

C5 (Multivariate Data). Look for correlations
among variables.

The same idea (that the neutral reference distribu-
tion is i.i.d.) applied to multivariate data implies that
the variables are independent. Correlations among

variables indicate that the dataset is potentially in-
formative and that the inquirer might discover which
variables may be suitable Y -variables and which vari-
ables may be X-variables.

A final variant of principle C combines data with
context knowledge.

C6. Look for discrepancies between a priori per-
ception and the data’s distribution.

If the data’s mean, spread, or another feature of
their distribution is at odds with what the inquirer
expected to find, that is a salient feature, as the fol-
lowing example illustrates.

Example 5: Bank Notes Staying Behind in a
Cash Center

In a bank’s cash center, bank notes are counted,
the corresponding amount is credited to the owner’s
account, and the bank notes are shipped to the Na-
tional Bank. There is a single daily shipment to
the National Bank and bank notes that are not yet
through the process at the moment of shipment stay
in the cash center for an additional day. The bank
loses one day’s interest on this amount.

Aiming to reduce the daily amount of money that
does not make the shipment to the National Bank, an
inquirer studied a dataset showing the daily amounts
of money staying overnight in the cash center. The
data showed few salient features, except that the
amount of money staying behind was never near zero,
but always substantially higher. This struck the in-
quirer as odd because he had expected that, on quiet
days, all bank notes would have been processed long
before they needed to be shipped. A discussion with
various people involved pinpointed the cause: the
cashier was told long ago always to keep around two
million euros’ worth of bank notes in reserve. This
policy, now outdated, was immediately corrected.

Interpret Salient Features

The third step in the process of EDA, the step
from identified salient features to hypotheses, is what
turns descriptive statistics into EDA. Salient features
in the data are the fingerprints of the effects of vari-
ables; upon identification of salient features, it is up
to the project leader to relate them to possible vari-
ables. How people discover things is a topic on the
intersection of artificial intelligence and the cognitive
sciences. Having long denied that there could be such
a thing as a logic of discovery, modern philosophy of
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science is making progress on this subject; see Tha-
gard (1992), for example.

The simplest form of discovery is purely data
driven and has the inquirer generalize features found
in the data. For example, upon observing that, as
long as records go back, the sun has risen each morn-
ing, the inquirer could generalize this pattern and
hypothesize that the sun will rise each morning.

A form of discovery that often leads to more in-
teresting hypotheses is explanation driven and it
is called abduction (originally introduced by Peirce
(1931–1935, CP 5.189), but see Niiniluoto (1999) or
De Mast and Bergman (2006) for an introduction).
Loosely said, abduction means that the inquirer com-
pares conceptual combinations to his observations
until all the pieces seem to fit together and a possi-
ble explanation pops up. The driving principle is ex-
planatory coherence (Thagard (2004)), which could
be said to be the extent to which the pieces fit to-
gether and is based on the extent to which an idea
explains a wide range of observations, is consistent
with context knowledge, and is simple (meaning: par-
simonious, with only a limited number of parameters
or side assumptions). The observation that the sun
rises each morning combined with other observations
and ideas could lead to the notion of the solar system
because the hypothesis of celestial bodies revolving
around a sun is a simple theory, which explains the
phenomenon of day and night, and is coherent with
a lot of other observations.

Coherence-driven discovery, finally, consists of rea-
soning to overcome apparent contradictions (Mag-
nani (2000)). Copernicus apparently constructed the
heliocentric model of the solar system specifically to
resolve contradictions in the then prevailing geocen-
tric model of Ptolemy (Thagard (1992), p. 196).

Note that the term abduction is used rather than
induction because the latter is reserved for a com-
plete inference (resulting in a refuted or corroborated
hypothesis). For example, the whole sequence of hy-
pothesis generation (possibly by abduction) followed
by empirically testing the hypothesis, leading to a
refutation or acceptance of the hypothesis, is an ex-
ample of an inductive inference (see Maher (1998)).

It should be clear that the third step in EDA—
interpretation of salient features—heavily depends
on context knowledge. Interpretation of salient fea-
tures considers how data are connected to things in
the world and thus requires an ontology of what sort
of things are in the world (and this, Mulaik (1985)

argues, makes this the work of the scientist [or in
our context, the engineer] instead of the statistician).
The practical ramification for inquirers is that iden-
tified salient features in datasets should be discussed
with people who have intimate knowledge of the pro-
cess under study. Example 2 (eccentricity of pins
on cellphone components) illustrates the point: upon
identification of the bimodality of the distribution,
the inquirer called in the help of the operators to ar-
rive at the hypothesis that properties of the molds
might be causal influence factors. We formulate the
fourth EDA principle:

D. Identified salient features should be paired with
context knowledge in order to interpret them.

The Use of Automatic
Procedures in EDA

It is hard to conceive that the third step in the pro-
cess of EDA (the interpretation of salient features)
can be automatized. The display of the data, how-
ever, and the identification of salient features could
be aided by automatic algorithms (think of proce-
dures for cluster analysis, runs tests, outlier detec-
tion, and the various tests for assignable causes in
control charts). The use of such algorithms has vari-
ous benefits:

• Humans tend to see too many patterns (that
is, they tend to mistake artefacts of noise as a
pattern). Guidelines, such as control limits and
runs rules in a control chart, give the inquirer
a sense of what degree of salientness could be
expected in mere noise.

• In high dimensional or large data sets, human
perception gets lost, and there is not really
an alternative for relying on automated proce-
dures, at least as a first step (cf. data mining,
principal components analysis, projection pur-
suit).

• The human pattern recognition capabilities can
be stimulated by enhancing the presentation of
the data by signaling salient features that can
be identified automatically.

One should be aware, however, that such algo-
rithms are necessarily limited in their versatility.
In general, they can do little beyond screening the
data for predefined patterns, missing the versatil-
ity of human pattern-recognition faculties. For ex-
ample, the various techniques generally understood
as change-point analysis (Lombard (1998)) or the
various approaches to pattern recognition (Kuncheva
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and Whitaker (2005)) all come down to the applica-
tion of classifiers. That is, rules that classify (features
of) the data as being “normal” or “salient”. A sim-
ple example of such a classifier is to mark residuals
in model fitting as “unusual” if they are larger than
two times the error standard deviation. There is no
real discovery going on here, only the application of
a predefined rule. There are many generic classifiers,
but for specific applications, these classifiers could be
tailor made (see such disciplines as machine learning
and discriminant analysis).

Besides automatically flagging salient features in
the data, automatic procedures could also be used to
provide displays of the data designed to make cer-
tain predefined forms of salient features stand out
more clearly. Think of a dendrogram in hierarchical
clustering (designed to reveal features in the data re-
lated to clustering) or a CUSUM (cumulative sum)
plot (designed to reveal drifts and shifts in the mean
in time-series data).

Final Remarks

Based on the EDA principles developed in this
paper (see Table 1) and the discussion above, Table
2 gives an overview of techniques useful for EDA.
Note that it focuses on numerical data. EDA based

on categorical data follows the same general process
and principles, but techniques and specific principles
are different. A future paper will address this topic.

In this final section, we use the developed ideas to
clarify a number of issues related to EDA. The first
point is repeated because of its importance, namely,
that EDA is only suitable for the discovery of fac-
tors that actually vary during data collection. For
this reason, it should be complemented by other ap-
proaches. The study of a large number of EDA ap-
plications led us to the impression that statisticians
tend to overrate the effectiveness of EDA for dis-
covery. Although there are abundant showcases in
the literature where EDA made all the difference in
a project, the quality-improvement projects that we
have been involved in suggest that EDA is an im-
portant, but not the most important, approach to
hypothesis generation. Discovery in general does not
follow the Baconian spirit that discoveries come from
looking at data, but is a more involved interaction be-
tween observations, background knowledge/process
knowledge, and detective work that is more pene-
trating than EDA (Mulaik (1985)). Often, EDA is
only the first step in the discovery of X-variables, fo-
cusing attention to a certain feature of the data’s dis-
tribution, but without providing sufficient clues for
the inquirer to be able to guess what the cause may

TABLE 1. EDA Principles

A The purpose of EDA is the identification of dependent (Y -) and independent (X-) variables that may
prove to be of interest for understanding or solving the problem under study

B Display the data such that their distribution is revealed
B1 (Stratified data) Display the data such that both their within-stratum and across-stratum distributions are

revealed
B2 (Data plus time order) Display the data such that their distributions within time intervals and across

time are revealed
B3 (Multivariate data) Project the data onto a 2- or 3-dimensional subspace and display the data’s

distribution over this subspace

C Assuming a neutral reference distribution, look for deviations from this reference distribution
C1 Look for deviations from normality
C2 Look for deviations from the maximum entropy distribution
C3 (Data plus time order) Look for deviations from i.i.d. (independent and identical distributions)
C4 (Stratified data) Look for between-strata differences in distribution
C5 (Multivariate data) Look for correlations among variables
C6 Look for discrepancies between a priori perception and the data’s distribution

D Identified salient features should be paired with context knowledge in order to interpret them
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TABLE 2. An Overview of EDA Techniques

Y-data only

Display data: histogram, plots of the empirical cumulative distribution function (ogive, probability plot)
Salient features: deviations from normality or another suitable neutral reference distribution
Automatic procedures: outlier detection procedures, cluster analysis

Y-data plus time order

Display data: time series plot, boxplot per time unit, individual value plot per time unit
Salient features: deviations from i.i.d. across time; deviations from normality or another neutral reference

distribution within time units
Automatic procedures: control charts (including control limits and runs tests), CUSUM and Cuscore charts,

change-point analysis techniques

Stratified Y-data

Display data: boxplots per stratum, individual value plot per stratum
Salient features: large between-stratum differences in distribution; deviations from normality or another

neutral reference distribution within strata

Multivariate data

Display data: scatter plot of projected data, contour plot of the empirical density projected onto a plane
Salient features: correlations among variables, deviations from normality or another neutral reference

distribution
Automatic procedures: principal components analysis (or related procedures), projection pursuit

be. Typically, EDA stimulates and gives direction to
the subsequent use of other discovery tools, such as
brainstorming, autopsy, pairwise comparison, knowl-
edge pooling, and the other approaches discussed in
De Mast and Bergman (2006).

Role of Probabilistic Argumentation

Procedures for the automatic identification of
salient features tend to involve probabilistic argu-
ments. Control limits in a control chart, for instance,
are related to a tail probability of a reference dis-
tribution; and in runs tests (such as six consecutive
observations all increasing or decreasing), the param-
eters (here: six) are based on a probabilistic argu-
ment (see Nelson (1985)). It is, however, good to re-
alize that probability plays no role in identifying the
pattern, only in quantifying how salient it is. How
long a pattern should be maintained to be signaled
as “salient” (is four on a row a trend? or five? or
six?) can be given a probabilistic basis. But the form
of the pattern (a sequence of increasing or decreas-

ing points) has no probabilistic basis. Although such
measures of salience bear a superficial resemblance to
significance levels of hypothesis tests, they are differ-
ent in purpose and principle.

Inferential Studies Camouflaged as EDA

Sometimes, hypotheses identified during an EDA
are taken as true facts, and thus hypothesis gener-
ation becomes inference. Looking at how inquirers
work, it is obvious that real data analyses are some-
where on a continuum, with EDA and CDA as ex-
tremes. Is there a problem with that? Contrary to
a popular belief, there is no problem on principle in
using the same data to generate a hypothesis and
test it; there is only the complication that p-values,
computed in the standard way, do not represent the
significance level of such a test, and a correct com-
putation of the significance level of such tests is com-
putationally arduous (see Mayo (1996) for a detailed
discussion of this issue). If one is willing to make in-
ferences without probabilistic specification of their
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significance, one can use data to inspire a hypoth-
esis and then use the same data as evidence (and,
in fact, an inferential pattern called “inference to the
best explanation” proceeds in this way—see Thagard
(2004)).

A serious problem with this procedure, however,
is that data that are used for EDA typically do
not lend themselves to being a basis for inferences
in the strong sense. The typically informal way in
which data for EDA are collected gives no guaran-
tee that they are representative for the population
under study or that the influence of nuisances is con-
trolled. This is no problem (or is even undesired) for
EDA, but it makes EDA data a dangerous basis for
inferences.
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