Agreement and Kappa-Type Indices

Jeroen bE MAST

Kappa-type indices use the concept of agreement to ex-
press the reproducibility of nominal measurements. This arti-
cle grounds kappa-type indices in statistical modeling, making
explicit the underlying premises and assumptions. We critically
review whether theinterpretation of the kappaindex asachance-
corrected probability of agreement can be substantiated. Further,
we show that the so-called paradoxical behavior of the kappa
index is explained from the fact that it is a measure of predic-
tive association, rather than a pure measure of reproducibility.
We discuss a humber of alternative forms, critically examining
whether they can be trandated in tangible rea-life interpreta-
tions.
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1. INTRODUCTION

An important aspect of measurement systems is their repro-
ducibility. Reproducibility is an aspect of the reliability (behav-
ioral sciences) or precision (engineering sciences) of ameasure-
ment system. This article dealswith reproducibility of measure-
ments on a nominal scale. Nominal scales consist of unordered
classes (Allen and Yen 1979), and nominal measurements clas-
sify objectsinto these classes. An example of nominal measure-
ment in industry is the classification of production faults into
a predefined system of categories (such as “machine related,”
“operator related,” “material related,” etc.). Other examplesin-
clude the classification of complaints into complaint types, and
the diagnosis of patients into disorder types. We will refer to
the faults, complaints, and patients being classified as the mea
sured objects. By the measurement system werefer to the quality
inspector, helpdesk employee, or physician performing the clas-
sification, and in addition to the procedure, instructions and aids
that he or she usesto do so.

Poor reproducibility could point to ineffective instructions,
insufficient expertise of the appraisers, or a general lack of un-
derstanding of the property that the system is supposed to mea-
sure. During areproducibility study anumber of objectsis mea
sured (in the case of nominal measurements: classified) multiple
times, possibly by multiple appraisers. Statistical experts could
estimate a parameterized model for the joint distribution of the
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repeated measurements, and thus obtain a detailed understand-
ing of the stochasti c properties of the measurement system under
study. But for the nonexpert it is more convenient to expressthe
reproducibility of ameasurement systemintermsof asingleor a
combination of afew indices. Thisarticledealswith suchindices
for expressing the reproducibility of nominal measurements.

Kappa-typeindicesare popul ar for expressing reproducibility
of nomina measurements in the psychometrical, biostatistical,
and engineering sciences [see Kraemer (1988) for a discussion
of the differences between the engineering context and the bio-
logical and behavioral contexts]. They are based on the concept
of agreement. Standard accounts of kappa-type indices are Co-
hen (1960), Fleiss (1971), Conger (1980), and Daviesand Fleiss
(1982). Kappa-type indices are surrounded by quite some con-
troversy. In this article we try to understand the behavior and
value of various kappa indices. We approach the issue by mak-
ing thelines of reasoning in papers such asthe above-mentioned
onesmoreexplicit. Our expositionsand discussionsare based on
morerigorousmathematical modeling. Further, wheretheabove-
mentioned papers define kappa-type indices solely in terms of
sample statistics, wethink it ismore appropriate to defineasolid
experimental model and provide an exposition in terms of pop-
ulation parameters. Landis and Koch (1977), Kraemer (1979),
and Tanner and Young (1985) provided accounts of kappa-type
indices grounded in statistical modeling. None of these articles
questioned and compared, however, the basic form of kappa-
typeindices (and in particular the so-called chance correction),
which is what this article aims to do. The reader looking for a
useful and recent source of references on the subject isreferred
to Kraemer, Periyakoil, and Noda (2002).

The next section defines our experimental model. The sub-
sequent sections define and discuss various indices based on
agreement. Our aim is to explicate the reasoning behind them,
and to study how they can beinterpreted in real-life terminol ogy.
In Section 7 (p. 5) we apply the various indices to an example,
highlighting their different meanings.

2. EXPERIMENTAL DESIGN AND DATA MODEL

To assess the reproducibility of a nominal measurement pro-
cedure one collects data in the following manner. We have n
objects, which are measured once by each of m appraisers on
anunordered scale {1, 2, ..., a}. The dataare denoted Y;;, with
i =1,...,nindexing objects,and j = 1, ..., m indexing ap-
praisers.

Of interest for reproducibility studiesisthe joint distribution
of the {Y;;};=1,.m, and in particular the association structure
between the repeated measurements. We choose to model the
Y;; using alatent class model (the main alternative being alog-
linear model). Although log-linear models are powerful means
to analyze association structures (see Tanner and Young 1985),
the advantage of |atent class modelsisthat the cause of the asso-
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ciation among repeated measurements—the objects' true values
with respect to the measured property—is modeled explicitly.
Conseguently, the variation in the measurementsisexplicitly at-
tributed to a systematic part (variation among true values) and a
random part (measurement variation), a practice which resem-
bles the typical manner in which reproducibility studiesfor ratio
and interval scale measurements are modeled.

Following considerations in Goodman and Kruskal (1954),
thetruevalues X;,i = 1, ..., n could be assumed categorical or
continuous. For nominal measurements, it seems more appropri-
ate to assume the same unordered categorical scale for both the
measurements Y;; and the true values X;. The X; are assumed
stochastically independent, and have a discrete distribution with
parameters

plk):=P(X; =k ,k=1,...,a,with}¥_; pk) =1

D

As for the distribution of the Y;;, we assume that given an ob-
ject’s true value X; the m measurements Y;1, Y2, ..., Y;, are
stochastically independent (the assumption of local indepen-
dence, which is standard in latent class models). Moreover, the
distribution of the Y;1, Y;2, ..., Y, depends on the true value
X;, and we define

q(k|6) == P(Yjj = k|X; = 0), 2
thus specifying the distribution of the measurement errors. The
model parameters p(k), k = 1,2,...,a, and g(k|¢), k, £ =
1, 2,...,a, determinethe distribution of the Y;; and we have

P(Yij=k = Y pO)qkle)
=1

=: ¢q(k) (marginal distribution). (©)
If the concept of rrue value isthought to be problematic, it may
help to view it as a hypothetical value that would be assigned
to the object by an authoritative measurement system (such as
the standard meter); see 1SO (1993). It is used to model the
dependence structure in the data.

DeMast and Van Wieringen (in press) provideasimilar model
in the case that each apprai ser measures each object s > 1times.
Another alternative, also discussed by De Mast and Van Wierin-
gen (in press), is to assume different stochastic properties for
each appraiser j, and replace Equation (2) with

qjklt) == P(Yij = k|X; = 0). )
Finally, the stochastic properties of the measurements may de-
pend on other factors than the true values X; alone. For this
reason, one could consider models with parameters of the form
qklt,u) = P(Y;; =k|X; =L, T; = u), with T afactor affect-
ing the stochastic properties of the measurements.

Thisarticlefocuseson the definition of theindex that isused to
express the result of reproducibility studies. For this reason, the
model is kept simpler, assuming a single measurement per ap-
praiser per object. The conclusions carry over in straightforward
manner to more complex experimental set-ups and models.

2 Statistical Practice

3. PROBABILITY OF AGREEMENT

Reproducibility of nominal measurements will be expressed
in terms of a probability of agreement. Two measurements of
an object agree if they are identical (the object is classified in
the same category both times). Pagreement (Or short: P,) is the
praobability that two arbitrary measurements of an arbitrary ob-
ject agree. Under the model specified by Equations (1)—(2), we
have for an object with true value X; = ¢:

Po(l) = Pij=YiplXi=10)
= Y 4K,
k=1
and for an arbitrary object:

a

Poi=P(Yij=Yijp) =) Y p)q*klo).

t=1k=1

®)

Fleiss (1971) introduced the sample statistic

R l n a
Pom ooy 22 0 NV = 1)

i=1k=1

(Fleiss'sformula(3)), where N;, = {#j : ¥;; = k}. DeMast and
Van Wieringen (in press) show that P, isan unbiased estimator
of P,.

P, isquite atangible expression of reproducibility; it can be
trandated quite easily in real-life implications. The main objec-
tion against itsuse, isthat it is difficult to compare values across
different scales. The chance of agreement is larger on a two-
point scale than on afive-point scale by chance alone, and as a
consequence, P, = 0.5 on atwo-point scale means something
else than the same value on a five-point scale.

4. KAPPA-TYPE INDICES

Thinking about which values of P, represent “good” mea
surement systems, and which represent “bad” ones, one should
realize that a positive value of P, does not automatically mean
that the measurements are well reproducible. Even if appraisers
would assign values to objects randomly, there would be some
agreement. To correct for thisphenomenon, Cohen (1960), Fleiss
(1971), Conger (1980) and numerous others have introduced «
(kappa) type indices as a recentered and rescaled version of P,.
The traditional formulais

_ Pobserved — P expected
1-P expected

Here, Popserved @d Pexpected bOth denote probabilities of agree-
ment. Pohserved 1S the probability of agreement for the measure-
ment system under study, while Pexpected iS the probability of
agreement for a “chance” measurement system (i.e., a com-
pletely uninformative measurement system that assigns mea-
surement values to objects randomly). The use of the words ob-
served and expected is questionable here, and we shall instead



use the more appropriate terminology

‘ — P, agreement — P, agreement|chance

: (6)

1-P agreement|chance

(resembling theterminology used by Lipsitz, Laird, and Brennan
1994).

Whereas the relevant range of P, iS[ Pagreement|chance, 1], the
relevant range of «-typeindicesis[0, 1], where 1 correspondsto
the agreement that a perfect measurement system would attain,
and 0 corresponds to the agreement that random measurements
would attain. The probability of agreement of such random mea-
surementswill be denoted Pagreement|chance (OF Short: Py ). Todo
this rescaling, we have to define how we conceive of a chance
measurement system (i.e., we have to specify what we mean if
we hypothesize about appraisers assigning values “randomly”).
Different notions of achance measurement system are advocated
in the literature, leading to quite some controversy.

A popular elaboration is the one by Fleiss (1971). In thisand
similar articles, the line of reasoning is not made very explicit,
and as a consequence it is difficult to give a precise exposition.
Thefollowing isour reconstruction of what we believeisimplic-
itly defined. Chance measurements are defined as measurements
done at random (i.e., independent of the object being measured)
and with a probability distribution equal to the marginal distri-
bution of the measurement system under study when applied to
the population under study. Denoting chance measurements by
Z;j, thisamountsto

Z;; areiidand P(Z;; =k) =q(k) fordli, j,andk. (7)

Under these premises, the probability of agreement of chance
measurements equal's Pa':l'f'ss = P(Zij, = Zij) = Y 5-14°(K).

Fleiss's (1971) estimator (his formula (5))

Flei SONE
pFleiss
Pa\c - Z (mn)z’

k=1

(with Ny = {#(, j) : Yi; = k}) has asmall bias (see De Mast
and Van Wieringen in press). We have
P, — PFE

1 _ PFIeiss

ale

KFIe& _

[actually, Fleiss (1971) gave only adefinition in terms of sample
Statistics].

The premise that chance measurements are independent of
the objects’ true values is uncontroversial, but the premise that
they have the distribution defined by the marginal distribution
q (k) seems hard to defend. It is difficult to see why the distribu-
tion of chance measurements would be related to the ¢ (k) (and
thereforeto the p(¢), thedistribution of the object’strue values),
especially given thefirst premise, that chance measurements are
independent of the objects’ true values. If chance measurements
are conceptualized as being uninformative about the measured
property, it is implausible that their distribution isin some way
related tothe g (k). Unfortunately, the suggestive rather than pre-
cise descriptions of the premises madein many accountsobscure
this discrepancy. Note that any other distributional assumption

for the chance measurements is likely to be arbitrary as well,
perhaps with one exception (as explained in the next section).

Because of this unconvincing and seemingly unsubstantiated
premise that chance measurements are distributed asin (7), we
think that the motivation for « €S asa probability of agreement
corrected for agreement by chance isweak. A better motivation
for « 79SS gs an index to express reproducibility is to understand
it as a measure of association. To be more precise, k7S js a
measure of predictive association based on Gini's measure of
dispersion. The general form of measures for predictive associ-
ation is (Hershberger and Fisher 2005)

: (8)

with A a measure of dispersion, Ay the dispersion of Y, and
Ayx the conditiona dispersion of Y given X (a strongly re-
|ated class of measures are the proportional reductionin error, or
PRE, measures of association, which are built around reduction
in probability of misclassification instead of reduction in disper-
sion). For a categorical variable Y with probability distribution
(P1, P2, ---, Pa), the Gini dispersion is Ay = 1 — Y¢_, p?
(Gilula and Haberman 1995). Substituting in (8) that Ay =
1-20 1 g%k andthat Ayjx = 1—>5_; p(6) Y4_; g% (k|€)
gives M8, Taking instead for Ay and Ay|x the entropy and
conditional entropy, one finds Theil’s coefficient (Haberman
1988), which is thus a direct cousin of «F1€ss,

It is quite common to express measurement precisioninterms
of ameasure of association (compare the intraclass correlation
index for ratio and interval scale measurements). One should be
aware, however, of an essentia difference between a measure
of association and a pure measure of reproducibility. A mea-
sure of association expresses reproducibility in relationship to
the variation in the population of measured objects (sometimes
called part-to-part spread, or prevalence). Consequently, mea-
sures of association are not useful for expressing ameasurement
system’s reproducibility independent of a population of mea-
sured objects. Pure measures of reproducibility—such as mea-
surement spread in Gauge R&R studies (Burdick, Borror, and
Montgomery 2003), and P, as defined above—express a mea-
surement system’ sreproducibility independent of the population
of objects being measured.

Consider thefollowing example, withanominal scaleof a = 2
categories. A measurement system’s statistical properties are
given by ¢(1/1) = 0.95; ¢(2|1) = 0.05; ¢(1|2) = 0.05; and
q(2]2) = 0.95 (the probability of agreement P, = 0.91 is quite
large). If onewereto study this measurement system on a popu-
|ation of objectswith distribution p(1) = 0.50and p(2) = 0.50,
one would find Pfl¥ = 0.50 and ¥ = 0.81. However, if
one studied the same measurement system on a population of
objects with distribution p(1) = 0.95 and p(2) = 0.05, one
would find P9 = 0.83 and « ¥ = 0.45. This dependence

of kF1¥SS on prevalence was noted by, for instance, Thompson
and Walter (1988).

The observation that « ™S is a measure of association and
not a pure measure of reproducibility explains behavior that is
often described as paradoxical (Feinstein and Cicchetti 1990).
Therelationship between P,, and « 7S isstrongly nonlinear, and
as aresult, small changesin P, can result in dramatic changes
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in «F¥sS. For example, assuming an objects population with
distribution p(1) = 0.95, p(2) = 0.05, a measurement system
with properties ¢ (1|1) = 1.0; ¢(2]1) = 0.0; ¢(1]2) = 0.0; and
g(2|2) = 1.0 gives ™9 = 1.0, but a measurement system
with properties ¢(1|1) = 0.95; ¢(2|1) = 0.05; ¢(1]2) = 0.05;
and ¢(2]2) = 0.95 gives k€S — 0.45. The strong sensitivity
of k9SS for small changes in the ¢ (k|¢) has as a consequence
that the standard error of the estimator 79SS may be so large
asto make it practically useless. Suppose, for example, that we
measure n = 100 objects m = 2 times, and that the resulting
classifications are

(#iZY,']_:Y,'zzl #iZY,']_:l,Y,'ZIZ)

#$i:Y1=2Yo=1 #i:Y1=Yo=2

(90
“lo1

The given datawould result in 79SS = 1.0, while

(1)

would give #F1¥SS = 0.66. This behavior is seen by many as
leading to results that are difficult to interpret.

The following warning is also based on the fact that « €SS
behaves asameasure of association. When expressing theresults
of areproducibility study in terms of ¥F'¥SS it isimportant that
the objects are a representative sample from the population of
objects. In practicethismeansthat it isvital that they are sampled
randomly, and that care should be taken to avoid any selection
bias. Trying to select objects such that an equal share of each
category is in the sample (a prescription sometimes found in
practice) can result in dramatic under- or overestimation.

The kappa index defined by Conger (1980) and Davies and
Fleiss (1982) is based on essentially the same line of reason-
ing, but assumes model (4) (for details see De Mast and Van
Wieringen in press).

). )

(10)

5. KAPPA INDEX BASED ON UNIFORM CHANCE
MEASUREMENTS

For chance measurements, the premise of randomness (i.e.,
values are assigned independently of the true values of the mea-
sured objects) is uncontroversial, but other distributiona as-
sumptionsare hard to defend. However, of al choices, auniform
distribution can be given some justification. Any other distribu-
tion indicates that the measurements are not compl etely uninfor-
mative. Fleiss's chance measurements, for example, are infor-
mative of the p(¢). The uniform distribution can be defended as
representing the maximally non-informative measurement sys-
tem given a certain scale {1, . . ., a}. Chance measurements are

conceived as
Z;j areiidand P(Z;; = k) =1/aforali, j,andk. (11)

We have PI"" = P(Zij, = Zij,) = 1/a. The corresponding
kappa statistic

Junit _ Pa—1/a
1-1/a

4 Statistical Practice

was proposed by Bennett, Alpert, and Goldstein (1954) and ad-
vocated by Brennan and Prediger (1981) and others. The value
1/a isalower bound for P, for measurement procedures whose
statistical properties follow Equations (1) and (2) (De Mast and
Van Wieringen in press), confirming that chance measurements,
so defined, represent amaximally noninformative measurement
system.

Several objections against <Y are raised in the literature.
Scott (1955) stated that “ The index is based on the assumption
that all categories. .. haveequal probability of use[1/a] by both
[appraisers]. Thisis an unwarranted assumption [in many real-
life situationg] ... . The phenomena being coded are likely to
be distributed unevenly.” This criticism seems misguided, how-
ever. Scott criticized the logic behind «Y"f for assuming that
pD), ..., p(a) = 1/a, which he finds—justly—an illegitimate
assumption (“The phenomena being coded are likely to be dis-
tributed unevenly”). But nowhere in the definition of «Y"f isit
assumed or implied that the p(¢) are uniformly distributed (nor
is this assumption made about the ¢ (k|¢) or the g (k)). Instead,
it is assumed that the distribution of the chance measurements
has no relation with the p(¢) or the g (k)—whichisin line with
the premise that chance measurements are independent of the
objects being measured.

A second issue comes to light if we study the next example.
Consider a measurement system with the following statistical
properties (a = 5):

Forall ¢ =1,...,5: g(1]¢) = 0.99;

q(k|6) = 0.0025 fork = 2,3,4,5, (12)

(i.e., ameasurement system which virtually always returns the
value 1 independent of the object being measured). This mea-
surement system is of course useless, and one could be puzzled
to find that «Y"f = 0.96. But on second thought, the repro-
ducibility of this measurement system actually is very good.
Measurement spread is practically nil, and results are almost
100% repeatable, and thisiswhat the high value of « Y reflects.
Instead of a reproducibility problem, the measurement system
has another problem, namely its poor accuracy (or validity). The
analogue for numerical measurement systemsis the case that a
system returns the value 3.14 (say) independent of the object
being measured. The measurement spread is zero, and hence its
reproducibility is perfect, but its accuracy is poor. Contrary to
the high value of «U"f | we have P9 = 0. Again, we see that
«F1€isS js not a pure measure of reproducibility, but confounds
this property with other properties.

Note that <YM is not a measure of predictive association,
but a pure measure of reproducibility. Consequently, it does not
suffer from what is described by many as interpretation prob-
lemsor paradoxical behavior associated with « F1€SS (asdescribed
above). For example, for the datain (9) and (10), /U"f = 1.0
and <Y = 0.98, respectively (compared to 1.0 and 0.66 for

I%FleiSS).

6. NUMBER OF DISTINGUISHABLE CLASSES

Another index based on P, isv = aP,. It could be loosely
interpreted as the number of classes a measurement system can



discern with perfect precision (a precise interpretation is devel-
oped in the Appendix). If P, = 1/a, then v = 1, indicating
that the procedure can discern but one class (i.e., it gives no
information). The maximal value of v is a, indicating that the
procedure can discern perfectly all a classesof the scale. Writing

P=(pQ),..., p) and Q = [g(k|£)], consider this exam-
ple.
0.25 05 05 O 0
0.25 05 05 O 0
P=1 02| @=| o o 05 05
0.25 0 0 05 05

In words: given atrue value of 1 or 2, we will get alora?2
(with equal chances); given atrue value of 3 or 4, weget a3 or
a4. Here, v = 4 x 0.5 = 2, indicating that the measurement
system can perfectly distinguish between two classes. In this
extreme case, these classes can be easily identified: combine 1
and 2 into aclass, and 3 and 4. The given measurement system

is asinformative as
), Q=( ),

-

which also hasv = 2. A morerealistic example:

0.5
0.5

10
01

0.2 0.47 047 0.03 0.03
p_ 0.2 Q= 0.47 047 0.03 0.03

03 |’ 0.05 005 045 045 |

0.3 0.05 0.05 045 0.45

hasv = 1.7 (P, = 0.42). This indicates that although the sys-
tem measures on a four-point scale, it conveys less information
than a system that perfectly distinguishes on a two-point scale.
But the system is substantially more informative than chance
measurements. In fact, the measurement system is precisely as
informative asthefollowing one, which measures on atwo-point

) o)

Alsointhiscase, v = 1.7 (but P, = 0.85). The v-index seems
valuable especially for scales with alarger number of classes.

0.4
0.6

0.94 0.06
0.10 0.90

7. DISCUSSION AND CONCLUSION

All indices discussed in this article can be defended and have
their use, but their meanings are not aike. We wish to demon-
strate these differences from an example, trying to capture each
index’s meaning in nontechnical terminology. We study a mea-
surement system producing measurement values on afive-point
nominal scale. The distribution of the true values P and the dis-
tribution of the measurement values given the true value Q are
given by

0.12 0.80 0.12 0.03 0.02 0.03
0.03 0.12 080 0.03 0.02 0.03
P=] 050 |, Q=] 002 002 090 0.03 0.03
0.30 0.03 0.00 0.00 095 0.02
0.05 0.00 0.00 0.20 0.10 0.70

The raw probability of agreement equals P, = 0.80, which
means the following. Given a randomly selected object, there
is a 80% chance that two arbitrary appraisers assign the same
valueto it. Thisresult is quite tangible, and therefore easily in-
terpreted. Thisisfairly larger than Py = 0.2, which indicates
that chance measurements (done purely at random and with a
uniform distribution) have a probability of agreement of 20%.

Fleiss's index «F¥ equals 0.71 (based on P8 = 0.33).
Thisnumber expressesthe degree of (predictive) association be-
tween repeated measurements of an object, but only provided
that objects are sampled from a population with anidentical dis-
tribution as P. Theresult iswell below theideal value of 1.0, but
itishard to give it amore tangible interpretation. Thisisagen-
eral problem of abstract association indices. the extreme values
have a clear interpretation, but it is difficult to substantiate that
the values in between convey information beyond the establish-
ment that reproducibility is somewhere in between perfect and
nil. It makesthe question of how large or how small « 7&S should
be in order to indicate an acceptable reproducibility hopelessly
arbitrary.

The kappa index based on uniform chance measurements is
1INt — 0.75. The value expresses the probability of agreement
in excess of the agreement that maximally noninformative mea-
surements (done randomly and uniformly distributed) would ob-
tain, and normalized to the unit interval. Also thisresult ismore
abstract.

Finaly, v = 4.01, which means that the information that this
measurement system providesis comparableto that provided by
asystem that perfectly distinguishes on afour-point scale.

APPENDIX: INTERPRETATION OF v

A precise formulation of the interpretation of v = aP, is
as follows. We refer to the measurement system under study as
system M (with ay; classes). Let its reproducibility be charac-
terized by vy, and let A = |vy] (the largest integer strictly
smaller than vy,) and B = vy — A. We construct a hypotheti-
cal system N that hasidentical reproducibility as M, but clearly
interpretable properties. System N measureson a (A + 1)-point
scale. It is applied in a population of objects with distribution
Pv={0/(A+1),1/(A+1),...,1/(A + 1)). The stochastic
properties of N are specified by the (A 4+ 1) x (A + 1) matrix

1 ... 0 0 0
Qv=1| o 1 0 o |-

o - 0 q l—g¢g

0 0 1—¢ q

whereq = (14-+/B)/2. System N classifiesobjectswith perfect
reproducibility in A classes (thelast class combines objectswith
truevalues A and A+ 1). Objectsclassifiedinthiscombined class
could be further subclassified into two classes with probability
of agreement equal to (B + 1)/2. Another property of N isthat
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VN = Vy. Namely,

A+1 A+1

(A+1)) p0) Y q**lo)

=1 k=1
A—1+2(q2~|—(1—q)2)
A+ B =vy.

VN

These results can be interpreted as follows. The reproducibility
of M is comparable to that obtained by measurement system
N (i.e, vyy = vy), which can perfectly classify objects into
A classes, the last of which it could further subdivide into two
subclasses into which it can distinguish objects with probability
of agreement equal to (B + 1)/2.

[Received October 2006. Revised February 2007.]
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