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Kappa-type indices use the concept of agreement to ex-
press the reproducibility of nominal measurements. This arti-
cle grounds kappa-type indices in statistical modeling, making
explicit the underlying premises and assumptions. We critically
review whether the interpretation of the kappa index as a chance-
corrected probability of agreement can be substantiated. Further,
we show that the so-called paradoxical behavior of the kappa
index is explained from the fact that it is a measure of predic-
tive association, rather than a pure measure of reproducibility.
We discuss a number of alternative forms, critically examining
whether they can be translated in tangible real-life interpreta-
tions.
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1. INTRODUCTION

An important aspect of measurement systems is their repro-
ducibility. Reproducibility is an aspect of the reliability (behav-
ioral sciences) or precision (engineering sciences) of a measure-
ment system. This article deals with reproducibility of measure-
ments on a nominal scale. Nominal scales consist of unordered
classes (Allen and Yen 1979), and nominal measurements clas-
sify objects into these classes. An example of nominal measure-
ment in industry is the classification of production faults into
a predefined system of categories (such as “machine related,”
“operator related,” “material related,” etc.). Other examples in-
clude the classification of complaints into complaint types, and
the diagnosis of patients into disorder types. We will refer to
the faults, complaints, and patients being classified as the mea-
sured objects. By the measurement system we refer to the quality
inspector, helpdesk employee, or physician performing the clas-
sification, and in addition to the procedure, instructions and aids
that he or she uses to do so.

Poor reproducibility could point to ineffective instructions,
insufficient expertise of the appraisers, or a general lack of un-
derstanding of the property that the system is supposed to mea-
sure. During a reproducibility study a number of objects is mea-
sured (in the case of nominal measurements: classified) multiple
times, possibly by multiple appraisers. Statistical experts could
estimate a parameterized model for the joint distribution of the
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repeated measurements, and thus obtain a detailed understand-
ing of the stochastic properties of the measurement system under
study. But for the nonexpert it is more convenient to express the
reproducibility of a measurement system in terms of a single or a
combination of a few indices. This article deals with such indices
for expressing the reproducibility of nominal measurements.

Kappa-type indices are popular for expressing reproducibility
of nominal measurements in the psychometrical, biostatistical,
and engineering sciences [see Kraemer (1988) for a discussion
of the differences between the engineering context and the bio-
logical and behavioral contexts]. They are based on the concept
of agreement. Standard accounts of kappa-type indices are Co-
hen (1960), Fleiss (1971), Conger (1980), and Davies and Fleiss
(1982). Kappa-type indices are surrounded by quite some con-
troversy. In this article we try to understand the behavior and
value of various kappa indices. We approach the issue by mak-
ing the lines of reasoning in papers such as the above-mentioned
ones more explicit. Our expositions and discussions are based on
more rigorous mathematical modeling. Further, where the above-
mentioned papers define kappa-type indices solely in terms of
sample statistics, we think it is more appropriate to define a solid
experimental model and provide an exposition in terms of pop-
ulation parameters. Landis and Koch (1977), Kraemer (1979),
and Tanner and Young (1985) provided accounts of kappa-type
indices grounded in statistical modeling. None of these articles
questioned and compared, however, the basic form of kappa-
type indices (and in particular the so-called chance correction),
which is what this article aims to do. The reader looking for a
useful and recent source of references on the subject is referred
to Kraemer, Periyakoil, and Noda (2002).

The next section defines our experimental model. The sub-
sequent sections define and discuss various indices based on
agreement. Our aim is to explicate the reasoning behind them,
and to study how they can be interpreted in real-life terminology.
In Section 7 (p. 5) we apply the various indices to an example,
highlighting their different meanings.

2. EXPERIMENTAL DESIGN AND DATA MODEL

To assess the reproducibility of a nominal measurement pro-
cedure one collects data in the following manner. We have n

objects, which are measured once by each of m appraisers on
an unordered scale {1, 2, . . . , a}. The data are denoted Yij , with
i = 1, . . . , n indexing objects, and j = 1, . . . , m indexing ap-
praisers.

Of interest for reproducibility studies is the joint distribution
of the {Yij }j=1,...,m, and in particular the association structure
between the repeated measurements. We choose to model the
Yij using a latent class model (the main alternative being a log-
linear model). Although log-linear models are powerful means
to analyze association structures (see Tanner and Young 1985),
the advantage of latent class models is that the cause of the asso-
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ciation among repeated measurements—the objects’ true values
with respect to the measured property—is modeled explicitly.
Consequently, the variation in the measurements is explicitly at-
tributed to a systematic part (variation among true values) and a
random part (measurement variation), a practice which resem-
bles the typical manner in which reproducibility studies for ratio
and interval scale measurements are modeled.

Following considerations in Goodman and Kruskal (1954),
the true values Xi , i = 1, . . . , n could be assumed categorical or
continuous. For nominal measurements, it seems more appropri-
ate to assume the same unordered categorical scale for both the
measurements Yij and the true values Xi . The Xi are assumed
stochastically independent, and have a discrete distribution with
parameters

p(k) := P(Xi = k) , k = 1, . . . , a, with
∑a

k=1 p(k) = 1.

(1)

As for the distribution of the Yij , we assume that given an ob-
ject’s true value Xi the m measurements Yi1, Yi2, . . . , Yim are
stochastically independent (the assumption of local indepen-
dence, which is standard in latent class models). Moreover, the
distribution of the Yi1, Yi2, . . . , Yim depends on the true value
Xi , and we define

q(k|�) := P(Yij = k|Xi = �), (2)

thus specifying the distribution of the measurement errors. The
model parameters p(k), k = 1, 2, . . . , a, and q(k|�), k, � =
1, 2, . . . , a, determine the distribution of the Yij and we have

P(Yij = k) =
a∑

�=1

p(�)q(k|�)

=: q(k) (marginal distribution). (3)

If the concept of true value is thought to be problematic, it may
help to view it as a hypothetical value that would be assigned
to the object by an authoritative measurement system (such as
the standard meter); see ISO (1993). It is used to model the
dependence structure in the data.

De Mast and Van Wieringen (in press) provide a similar model
in the case that each appraiser measures each object s ≥ 1 times.
Another alternative, also discussed by De Mast and Van Wierin-
gen (in press), is to assume different stochastic properties for
each appraiser j , and replace Equation (2) with

qj (k|�) := P(Yij = k|Xi = �). (4)

Finally, the stochastic properties of the measurements may de-
pend on other factors than the true values Xi alone. For this
reason, one could consider models with parameters of the form
q(k|�, u) = P(Yij = k|Xi = �, Ti = u), with T a factor affect-
ing the stochastic properties of the measurements.

This article focuses on the definition of the index that is used to
express the result of reproducibility studies. For this reason, the
model is kept simpler, assuming a single measurement per ap-
praiser per object. The conclusions carry over in straightforward
manner to more complex experimental set-ups and models.

3. PROBABILITY OF AGREEMENT

Reproducibility of nominal measurements will be expressed
in terms of a probability of agreement. Two measurements of
an object agree if they are identical (the object is classified in
the same category both times). Pagreement (or short: Pa) is the
probability that two arbitrary measurements of an arbitrary ob-
ject agree. Under the model specified by Equations (1)–(2), we
have for an object with true value Xi = �:

Pa(�) := P(Yi j1 = Yi j2 |Xi = �)

=
a∑

k=1

q2(k|�),

and for an arbitrary object:

Pa := P(Yi j1 = Yi j2) =
a∑

�=1

a∑
k=1

p(�) q2(k|�). (5)

Fleiss (1971) introduced the sample statistic

P̂a = 1

nm(m − 1)

n∑
i=1

a∑
k=1

Nik(Nik − 1)

(Fleiss’s formula (3)), where Nik = {#j : Yij = k}. De Mast and
Van Wieringen (in press) show that P̂a is an unbiased estimator
of Pa .

Pa is quite a tangible expression of reproducibility; it can be
translated quite easily in real-life implications. The main objec-
tion against its use, is that it is difficult to compare values across
different scales. The chance of agreement is larger on a two-
point scale than on a five-point scale by chance alone, and as a
consequence, Pa = 0.5 on a two-point scale means something
else than the same value on a five-point scale.

4. KAPPA-TYPE INDICES

Thinking about which values of Pa represent “good” mea-
surement systems, and which represent “bad” ones, one should
realize that a positive value of Pa does not automatically mean
that the measurements are well reproducible. Even if appraisers
would assign values to objects randomly, there would be some
agreement. To correct for this phenomenon, Cohen (1960), Fleiss
(1971), Conger (1980) and numerous others have introduced κ

(kappa) type indices as a recentered and rescaled version of Pa .
The traditional formula is

κ = Pobserved − Pexpected

1 − Pexpected
.

Here, Pobserved and Pexpected both denote probabilities of agree-
ment. Pobserved is the probability of agreement for the measure-
ment system under study, while Pexpected is the probability of
agreement for a “chance” measurement system (i.e., a com-
pletely uninformative measurement system that assigns mea-
surement values to objects randomly). The use of the words ob-
served and expected is questionable here, and we shall instead
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use the more appropriate terminology

κ = Pagreement − Pagreement|chance

1 − Pagreement|chance
, (6)

(resembling the terminology used by Lipsitz, Laird, and Brennan
1994).

Whereas the relevant range of Pa is [Pagreement|chance, 1], the
relevant range of κ-type indices is [0, 1], where 1 corresponds to
the agreement that a perfect measurement system would attain,
and 0 corresponds to the agreement that random measurements
would attain. The probability of agreement of such random mea-
surements will be denoted Pagreement|chance (or short: Pa|c). To do
this rescaling, we have to define how we conceive of a chance
measurement system (i.e., we have to specify what we mean if
we hypothesize about appraisers assigning values “randomly”).
Different notions of a chance measurement system are advocated
in the literature, leading to quite some controversy.

A popular elaboration is the one by Fleiss (1971). In this and
similar articles, the line of reasoning is not made very explicit,
and as a consequence it is difficult to give a precise exposition.
The following is our reconstruction of what we believe is implic-
itly defined. Chance measurements are defined as measurements
done at random (i.e., independent of the object being measured)
and with a probability distribution equal to the marginal distri-
bution of the measurement system under study when applied to
the population under study. Denoting chance measurements by
Zij , this amounts to

Zij are iid and P(Zij = k) = q(k) for all i, j , and k. (7)

Under these premises, the probability of agreement of chance
measurements equals P Fleiss

a|c = P(Zij1 = Zij2) = ∑a
k=1 q2(k).

Fleiss’s (1971) estimator (his formula (5))

P̂ Fleiss
a|c =

a∑
k=1

N2
k

(mn)2
,

(with Nk = {#(i, j) : Yij = k}) has a small bias (see De Mast
and Van Wieringen in press). We have

κFleiss = Pa − P Fleiss
a|c

1 − P Fleiss
a|c

[actually, Fleiss (1971) gave only a definition in terms of sample
statistics].

The premise that chance measurements are independent of
the objects’ true values is uncontroversial, but the premise that
they have the distribution defined by the marginal distribution
q(k) seems hard to defend. It is difficult to see why the distribu-
tion of chance measurements would be related to the q(k) (and
therefore to the p(�), the distribution of the object’s true values),
especially given the first premise, that chance measurements are
independent of the objects’ true values. If chance measurements
are conceptualized as being uninformative about the measured
property, it is implausible that their distribution is in some way
related to the q(k). Unfortunately, the suggestive rather than pre-
cise descriptions of the premises made in many accounts obscure
this discrepancy. Note that any other distributional assumption

for the chance measurements is likely to be arbitrary as well,
perhaps with one exception (as explained in the next section).

Because of this unconvincing and seemingly unsubstantiated
premise that chance measurements are distributed as in (7), we
think that the motivation for κFleiss as a probability of agreement
corrected for agreement by chance is weak. A better motivation
for κFleiss as an index to express reproducibility is to understand
it as a measure of association. To be more precise, κFleiss is a
measure of predictive association based on Gini’s measure of
dispersion. The general form of measures for predictive associ-
ation is (Hershberger and Fisher 2005)

rY,X = 1 − �Y |X
�Y

, (8)

with � a measure of dispersion, �Y the dispersion of Y , and
�Y |X the conditional dispersion of Y given X (a strongly re-
lated class of measures are the proportional reduction in error, or
PRE, measures of association, which are built around reduction
in probability of misclassification instead of reduction in disper-
sion). For a categorical variable Y with probability distribution
(p1, p2, . . . , pa), the Gini dispersion is �Y = 1 − ∑a

k=1 p2
k

(Gilula and Haberman 1995). Substituting in (8) that �Y =
1−∑a

k=1 q2(k) and that �Y |X = 1−∑a
�=1 p(�)

∑a
k=1 q2(k|�)

gives κFleiss. Taking instead for �Y and �Y |X the entropy and
conditional entropy, one finds Theil’s coefficient (Haberman
1988), which is thus a direct cousin of κFleiss.

It is quite common to express measurement precision in terms
of a measure of association (compare the intraclass correlation
index for ratio and interval scale measurements). One should be
aware, however, of an essential difference between a measure
of association and a pure measure of reproducibility. A mea-
sure of association expresses reproducibility in relationship to
the variation in the population of measured objects (sometimes
called part-to-part spread, or prevalence). Consequently, mea-
sures of association are not useful for expressing a measurement
system’s reproducibility independent of a population of mea-
sured objects. Pure measures of reproducibility—such as mea-
surement spread in Gauge R&R studies (Burdick, Borror, and
Montgomery 2003), and Pa as defined above—express a mea-
surement system’s reproducibility independent of the population
of objects being measured.

Consider the following example, with a nominal scale ofa = 2
categories. A measurement system’s statistical properties are
given by q(1|1) = 0.95; q(2|1) = 0.05; q(1|2) = 0.05; and
q(2|2) = 0.95 (the probability of agreement Pa = 0.91 is quite
large). If one were to study this measurement system on a popu-
lation of objects with distribution p(1) = 0.50 and p(2) = 0.50,
one would find P Fleiss

a|c = 0.50 and κFleiss = 0.81. However, if
one studied the same measurement system on a population of
objects with distribution p(1) = 0.95 and p(2) = 0.05, one
would find P Fleiss

a|c = 0.83 and κFleiss = 0.45. This dependence

of κFleiss on prevalence was noted by, for instance, Thompson
and Walter (1988).

The observation that κFleiss is a measure of association and
not a pure measure of reproducibility explains behavior that is
often described as paradoxical (Feinstein and Cicchetti 1990).
The relationship between Pa and κFleiss is strongly nonlinear, and
as a result, small changes in Pa can result in dramatic changes
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in κFleiss. For example, assuming an objects population with
distribution p(1) = 0.95, p(2) = 0.05, a measurement system
with properties q(1|1) = 1.0; q(2|1) = 0.0; q(1|2) = 0.0; and
q(2|2) = 1.0 gives κFleiss = 1.0, but a measurement system
with properties q(1|1) = 0.95; q(2|1) = 0.05; q(1|2) = 0.05;
and q(2|2) = 0.95 gives κFleiss = 0.45. The strong sensitivity
of κFleiss for small changes in the q(k|�) has as a consequence
that the standard error of the estimator κ̂Fleiss may be so large
as to make it practically useless. Suppose, for example, that we
measure n = 100 objects m = 2 times, and that the resulting
classifications are
 #i : Yi1 = Yi2 = 1 #i : Yi1 = 1, Yi2 = 2

#i : Yi1 = 2, Yi2 = 1 #i : Yi1 = Yi2 = 2




=
(

99 0
0 1

)
. (9)

The given data would result in κ̂Fleiss = 1.0, while(
98 1
0 1

)
. (10)

would give κ̂Fleiss = 0.66. This behavior is seen by many as
leading to results that are difficult to interpret.

The following warning is also based on the fact that κFleiss

behaves as a measure of association. When expressing the results
of a reproducibility study in terms of κFleiss, it is important that
the objects are a representative sample from the population of
objects. In practice this means that it is vital that they are sampled
randomly, and that care should be taken to avoid any selection
bias. Trying to select objects such that an equal share of each
category is in the sample (a prescription sometimes found in
practice) can result in dramatic under- or overestimation.

The kappa index defined by Conger (1980) and Davies and
Fleiss (1982) is based on essentially the same line of reason-
ing, but assumes model (4) (for details see De Mast and Van
Wieringen in press).

5. KAPPA INDEX BASED ON UNIFORM CHANCE
MEASUREMENTS

For chance measurements, the premise of randomness (i.e.,
values are assigned independently of the true values of the mea-
sured objects) is uncontroversial, but other distributional as-
sumptions are hard to defend. However, of all choices, a uniform
distribution can be given some justification. Any other distribu-
tion indicates that the measurements are not completely uninfor-
mative. Fleiss’s chance measurements, for example, are infor-
mative of the p(�). The uniform distribution can be defended as
representing the maximally non-informative measurement sys-
tem given a certain scale {1, . . . , a}. Chance measurements are
conceived as

Zij are iid and P(Zij = k) = 1/a for all i, j , and k. (11)

We have P Unif
a|c = P(Zij1 = Zij2) = 1/a. The corresponding

kappa statistic

κUnif = Pa − 1/a

1 − 1/a

was proposed by Bennett, Alpert, and Goldstein (1954) and ad-
vocated by Brennan and Prediger (1981) and others. The value
1/a is a lower bound for Pa for measurement procedures whose
statistical properties follow Equations (1) and (2) (De Mast and
Van Wieringen in press), confirming that chance measurements,
so defined, represent a maximally noninformative measurement
system.

Several objections against κUnif are raised in the literature.
Scott (1955) stated that “The index is based on the assumption
that all categories . . . have equal probability of use [1/a] by both
[appraisers]. This is an unwarranted assumption [in many real-
life situations] . . . . The phenomena being coded are likely to
be distributed unevenly.” This criticism seems misguided, how-
ever. Scott criticized the logic behind κUnif for assuming that
p(1), . . . , p(a) = 1/a, which he finds—justly—an illegitimate
assumption (“The phenomena being coded are likely to be dis-
tributed unevenly”). But nowhere in the definition of κUnif is it
assumed or implied that the p(�) are uniformly distributed (nor
is this assumption made about the q(k|�) or the q(k)). Instead,
it is assumed that the distribution of the chance measurements
has no relation with the p(�) or the q(k)—which is in line with
the premise that chance measurements are independent of the
objects being measured.

A second issue comes to light if we study the next example.
Consider a measurement system with the following statistical
properties (a = 5):

For all � = 1, . . . , 5: q(1|�) = 0.99;
q(k|�) = 0.0025 for k = 2, 3, 4, 5, (12)

(i.e., a measurement system which virtually always returns the
value 1 independent of the object being measured). This mea-
surement system is of course useless, and one could be puzzled
to find that κUnif = 0.96. But on second thought, the repro-
ducibility of this measurement system actually is very good.
Measurement spread is practically nil, and results are almost
100% repeatable, and this is what the high value of κUnif reflects.
Instead of a reproducibility problem, the measurement system
has another problem, namely its poor accuracy (or validity). The
analogue for numerical measurement systems is the case that a
system returns the value 3.14 (say) independent of the object
being measured. The measurement spread is zero, and hence its
reproducibility is perfect, but its accuracy is poor. Contrary to
the high value of κUnif , we have κFleiss = 0. Again, we see that
κFleiss is not a pure measure of reproducibility, but confounds
this property with other properties.

Note that κUnif is not a measure of predictive association,
but a pure measure of reproducibility. Consequently, it does not
suffer from what is described by many as interpretation prob-
lems or paradoxical behavior associated withκFleiss (as described
above). For example, for the data in (9) and (10), κ̂Unif = 1.0
and κ̂Unif = 0.98, respectively (compared to 1.0 and 0.66 for
κ̂Fleiss).

6. NUMBER OF DISTINGUISHABLE CLASSES

Another index based on Pa is ν = aPa . It could be loosely
interpreted as the number of classes a measurement system can
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discern with perfect precision (a precise interpretation is devel-
oped in the Appendix). If Pa = 1/a, then ν = 1, indicating
that the procedure can discern but one class (i.e., it gives no
information). The maximal value of ν is a, indicating that the
procedure can discern perfectly all a classes of the scale. Writing
P = (p(1), . . . , p(a))′ and Q = [q(k|�)], consider this exam-
ple.

P =




0.25
0.25
0.25
0.25


 , Q =




0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5


 .

In words: given a true value of 1 or 2, we will get a 1 or a 2
(with equal chances); given a true value of 3 or 4, we get a 3 or
a 4. Here, ν = 4 × 0.5 = 2, indicating that the measurement
system can perfectly distinguish between two classes. In this
extreme case, these classes can be easily identified: combine 1
and 2 into a class, and 3 and 4. The given measurement system
is as informative as

P =
(

0.5
0.5

)
, Q =

(
1 0
0 1

)
,

which also has ν = 2. A more realistic example:

P =




0.2
0.2
0.3
0.3


 , Q =




0.47 0.47 0.03 0.03
0.47 0.47 0.03 0.03
0.05 0.05 0.45 0.45
0.05 0.05 0.45 0.45


 ,

has ν = 1.7 (Pa = 0.42). This indicates that although the sys-
tem measures on a four-point scale, it conveys less information
than a system that perfectly distinguishes on a two-point scale.
But the system is substantially more informative than chance
measurements. In fact, the measurement system is precisely as
informative as the following one, which measures on a two-point
scale

P =
(

0.4
0.6

)
, Q =

(
0.94 0.06
0.10 0.90

)
.

Also in this case, ν = 1.7 (but Pa = 0.85). The ν-index seems
valuable especially for scales with a larger number of classes.

7. DISCUSSION AND CONCLUSION

All indices discussed in this article can be defended and have
their use, but their meanings are not alike. We wish to demon-
strate these differences from an example, trying to capture each
index’s meaning in nontechnical terminology. We study a mea-
surement system producing measurement values on a five-point
nominal scale. The distribution of the true values P and the dis-
tribution of the measurement values given the true value Q are
given by

P =




0.12
0.03
0.50
0.30
0.05


 , Q =




0.80 0.12 0.03 0.02 0.03
0.12 0.80 0.03 0.02 0.03
0.02 0.02 0.90 0.03 0.03
0.03 0.00 0.00 0.95 0.02
0.00 0.00 0.20 0.10 0.70


 .

The raw probability of agreement equals Pa = 0.80, which
means the following. Given a randomly selected object, there
is a 80% chance that two arbitrary appraisers assign the same
value to it. This result is quite tangible, and therefore easily in-
terpreted. This is fairly larger than P Unif

a|c = 0.2, which indicates
that chance measurements (done purely at random and with a
uniform distribution) have a probability of agreement of 20%.

Fleiss’s index κFleiss equals 0.71 (based on P Fleiss
a|c = 0.33).

This number expresses the degree of (predictive) association be-
tween repeated measurements of an object, but only provided
that objects are sampled from a population with an identical dis-
tribution as P. The result is well below the ideal value of 1.0, but
it is hard to give it a more tangible interpretation. This is a gen-
eral problem of abstract association indices: the extreme values
have a clear interpretation, but it is difficult to substantiate that
the values in between convey information beyond the establish-
ment that reproducibility is somewhere in between perfect and
nil. It makes the question of how large or how small κFleiss should
be in order to indicate an acceptable reproducibility hopelessly
arbitrary.

The kappa index based on uniform chance measurements is
κUnif = 0.75. The value expresses the probability of agreement
in excess of the agreement that maximally noninformative mea-
surements (done randomly and uniformly distributed) would ob-
tain, and normalized to the unit interval. Also this result is more
abstract.

Finally, ν = 4.01, which means that the information that this
measurement system provides is comparable to that provided by
a system that perfectly distinguishes on a four-point scale.

APPENDIX: INTERPRETATION OF ν

A precise formulation of the interpretation of ν = aPa is
as follows. We refer to the measurement system under study as
system M (with aM classes). Let its reproducibility be charac-
terized by νM , and let A = �νM
 (the largest integer strictly
smaller than νM ) and B = νM − A. We construct a hypotheti-
cal system N that has identical reproducibility as M , but clearly
interpretable properties. System N measures on a (A + 1)-point
scale. It is applied in a population of objects with distribution
PN = (1/(A + 1), 1/(A + 1), . . . , 1/(A + 1)). The stochastic
properties of N are specified by the (A + 1) × (A + 1) matrix

QN =




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 q 1 − q

0 · · · 0 1 − q q




,

where q = (1+√
B)/2. System N classifies objects with perfect

reproducibility in A classes (the last class combines objects with
true values A and A+1). Objects classified in this combined class
could be further subclassified into two classes with probability
of agreement equal to (B + 1)/2. Another property of N is that
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νN = νM . Namely,

νN = (A + 1)

A+1∑
�=1

p(�)

A+1∑
k=1

q2(k|�)

= A − 1 + 2
(
q2 + (1 − q)2

)
= A + B = νM.

These results can be interpreted as follows. The reproducibility
of M is comparable to that obtained by measurement system
N (i.e., νM = νN ), which can perfectly classify objects into
A classes, the last of which it could further subdivide into two
subclasses into which it can distinguish objects with probability
of agreement equal to (B + 1)/2.

[Received October 2006. Revised February 2007.]

REFERENCES

Allen, M. J., and Yen, W. M. (1979), Introduction to Measurement Theory,
Monterey: Brooks/Cole.

Bennett, E. M., Alpert, R., and Goldstein, A. C. (1954), “Communications
Through Limited Response Questioning,” Public Opinion Quarterly, 18,
303–308.

Brennan, R. L., and Prediger, D. J. (1981), “Coefficient Kappa: Some Uses,
Misuses, and Alternatives,” Educational and Psychological Measurement,
41, 687–699.

Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2003), “A Review of
Methods for Measurement Systems Capability Analysis,” Journal of Quality
Technology, 35, 342–354.

Cohen, J. (1960), “A Coefficient of Agreement for Nominal Scales,” Educational
and Psychological Measurement, 20, 37–46.

Conger, A. J. (1980), “Integration and Generalization of Kappas for Multiple
Raters,” Psychological Bulletin, 88, 322–328.

Davies, M., and Fleiss, J. L. (1982), “Measuring Agreement for Multinomial
Data,” Biometrics, 38, 1047–1051.

De Mast, J., and Van Wieringen, W. N. (in press), “Measurement System Analysis
for Categorical Data: Agreement and Kappa Type Indices ,” Journal of
Quality Technology.

Feinstein, A. R., and Cicchetti, D. V. (1990), “High Agreement but Low Kappa,”
Journal of Clinical Epidemiology, 43, 543–549; 553–558.

Fleiss, J. L. (1971), “Measuring Nominal Scale Agreement Among Many
Raters,” Pychological Bulletin, 76, 378–382.

Gilula, Z., and Haberman, S. J. (1995), “Dispersion of Categorical Variables and
Penalty Functions: Derivation, Estimation, and Comparability,” Journal of
the American Statistical Association, 90, 1447–1452.

Goodman, L. A., and Kruskal, W. H. (1954), “Measures of Association for Cross
Classifications,” Journal of the American Statistical Association, 49, 732–
764.

Haberman, S. J. (1988), “Association, Measures of,” in Encyclopedia of Statis-
tical Sciences (vol. 1), eds. S. Kotz and N. L. Johnson, Chichester: Wiley.

Hershberger, S. L., and Fisher, D. G. (2005), “Measures of Association,” in
Encyclopedia of Statistics in Behavioral Science (Vol. 3), eds. B. Everitt
and D. Howell, Chichester: Wiley, pp. 1183–1192.

ISO (1993), Guide to the Expression of Measurement Uncertainty (1st ed.),
Geneva: International Organization for Standardization.

Kraemer, H. C. (1979), “Ramifications of a Population Model for κ as a Coeffi-
cient of Reliability,” Psychometrika, 44, 461–472.

(1988), “Assessment of 2×2 Associations: Generalization of Signal-
Detection Methodology,” The American Statistician, 42, 37–49.

Kraemer, H. C., Periyakoil, V. S., and Noda, A. (2002), “Tutorial in Biostatistics:
Kappa Coefficients in Medical Research,” Statistics in Medicine, 21, 2109–
2129.

Landis, J. R., and Koch, G. G. (1977), “The Measurement of Observer Agreement
for Categorical Data,” Biometrics, 33, 159–174.

Lipsitz, S. R., Laird, N. M., and Brennan, T. A. (1994), “Simple Moment Esti-
mates of the k-Coefficient and its Variance,” Applied Statistics, 43, 309–323.

Scott, W. A. (1955), “Reliability of Content Analysis: The Case of Nominal
Scale Coding,” Public Opinion Quarterly, 19, 321–325.

Tanner, M. A., and Young, M. A. (1985), “Modeling Agreement Among Raters,”
Journal of the American Statistical Association, 80, 175–180.

Thompson, W. D., and Walter, S. D. (1988), “A Reappraisal of the Kappa Coef-
ficient,” Journal of Clinical Epidemiology, 41, 949–958.

6 Statistical Practice


