
Quality Technology & 
Quantitative Management 
Vol. 3, No. 1, pp. 111-125, 2006 

 

QQTTQQMM  
© ICAQM 2006 

 
 

  

A Semi-Bayesian Method for  
Shewhart Individual Control Charts  

M. B. (Thijs) Vermaat and Ronald J. M. M. Does 

Institute for Business and Industrial Statistics,  
IBIS UvA, University of Amsterdam, 

Amsterdam, The Netherlands 
 (Received February 2004, accepted June 2005) 

______________________________________________________________________ 

Abstract: Shewhart control limits for individual observations are traditionally based on the average of  the 
moving ranges. The performance of  this control chart behaves quite well if  the underlying distribution is 
normal and the sample size is greater than 250. Under non-normality it is recommended to use control 
charts based on non-parametric statistics. The drawback of  these individual control charts is that at least 
1,000 observations are needed to obtain appropriate results. In this paper we propose an alternative 
individual control chart which behaves quite well under non-normality for moderate sample sizes in the 
range of  250 through 1,000 observations. To apply this control chart one starts with an initial guess for the 
density function of  the characteristic under study. Based on this initial guess and the observed data a 
density function can be derived by means of  an approximation with Bernstein polynomials. The 
in-control and out-of-control performance of  the proposed control chart and the traditional control charts 
are studied by simulation. If  the initial guess is appropriate, then for non-normal data and moderate 
sample sizes in the order of  250 through 1,000 observations, the new method performs better than the 
individual control charts based on the average of  the moving ranges or based on non-parametric statistics. 
So for these sample sizes we have tried to close the gap. 

Keywords: Bernstein polynomials, non-parametrics, quality control, semi-Bayesian, statistical process 
control.  
______________________________________________________________________ 

1. Introduction 

1.1. Background 

n 1924 Shewhart developed the control chart which is an outstanding instrument to 
facilitate process control (cf. [25]). At least 20-25 initial samples of  about five units each 

are needed before we can estimate with sufficient confidence the control limits. Much 
larger data sets (at least 300) are needed if  the sample size equals one (cf. [19]). For this 
situation the so called individual control chart has developed (cf. [10]). For the estimation 
of  the parameters ( µ  and σ ) of  the control limits (cf. Section 2), Duncan [10] uses the 
sample mean and the average of  the moving ranges, respectively. In the literature also other 
estimators for the control limits are proposed, cf. [7] and [23]. Up-to-date books on 
statistical process control are [9], [17], [20], and [32].  

I

1.2. Non-Normality and Control Charts 

Usually, one assumes that the underlying distribution function of  the quality 
characteristic is normal. In practice we have often characteristics under study which are not 
normally distributed (e.g. skewed distributed). A number of  authors has pointed out that 
Shewhart charts for subgroup means work well irrespective of  the measurements are 
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normally distributed or not ([24] and [31]). However, the behavior of  the traditional control 
chart for individual measurements is seriously affected by departures from normality (see 
e.g. [3], [27], and [35]). Furthermore, non-normal data are quite common in SPC 
applications. In situations with a large number of  observations it may be possible to 
subgroup the data to avoid an individual chart. If  subgrouping is not possible and 
non-normality is evident, two alternatives are:  
(1) Transform the data to normality or  
(2) Modify the control limits based on a suitable (parametric or non-parametric) model for 
the data (see [21]). 
Possibilities for the first alternative are to use the Box-Cox transformation or Johnson 
transformation. Statistical software programs like Minitab may carry out such a 
transformation almost automatically. In this paper we will concentrate on the second 
alternative. If  large data sets are available, an attractive approach to parametric statistical 
inference is to use these large data sets to study the distributional form. There is a huge 
statistical literature available in the areas of  goodness-of-fit and parametric modelling (cf. 
[8]).  

In a recent paper of  Vermaat et al. [30] individual control charts based on empirical 
quantiles, kernel estimators, and extreme-value theory are studied. It turned out that these 
alternative individual control charts were quite robust against deviations from normality if  
the number of  observations is at least 1,000. Control charts for non-normal data are further 
studied by [3], [6], [26], and [27] among others.  

Bayesian methods for the estimation of  control limits are also studied in the literature 
of  control charts. In [28] a discussion of  the application of  empirical Bayes for the 
estimation of  a distribution of  the characteristic under study is given (see also [29], [34], 
and [16]. Other papers which use Bayesian methods in quality control are [5], [11], [12], 
[13], and [14].  

1.3. Semi-Bayesian Approach 

For sample sizes till 1,000 there is no good alternative under non-normality (cf. [19] 
and [30]). In this paper we propose a new method for the estimation of  the control limits 
for moderate sample sizes (i.e. for sample sizes in the range of  250 through 1,000). This 
method makes use of  an initial guess of  the underlying distribution function and Bernstein 
polynomials. The Bernstein polynomial is a linear function of  order statistics with smooth 
weight functions and may be used to estimate quantile functions (cf. [18]). In [4] Bernstein 
polynomials are used for non-parametric density estimation. In [2] some improvements are 
studied. We compare the individual control charts based on Bernstein polynomials with the 
traditional Shewhart control chart for individuals with control limits based on the average 
of  the moving ranges and with the empirical quantile control chart studied in [30]. The 
statistical performance of  these methods will be studied by an extensive simulation study.  

The paper is organized as follows. In the next section the different methods for the 
estimation of  the control limits are given. We illustrate the different methods by means of  a 
real life example. To compare the different methods a simulation study is presented. Finally, 
we conclude with our findings.  

2. The Traditional Individual Control Chart based on Moving Ranges 

The traditional Shewhart individual control chart has control limits defined by 

UCL = 
αµ σ−+ Φ −1(1 )
2

 and  LCL = 
αµ σ−+ Φ 1( )
2

, 
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where  is the standard normal quantile function, and where −Φ 1 µ  is the mean and σ  
is the standard deviation of  the normal distribution function . Level F α  is the false 
alarm rate (e.g. for α  = 0.0027 we obtain α−Φ − =1

2(1 ) 3 ). Typically, µ  and σ  are 
unknown in practice. However, we assume that they can be estimated via a Phase I sample 

, …,  of  independently and identically distributed random variables. Recall from 
[33], that Phase I refers to the retrospective analyze phase and Phase II refers to the 
monitoring phase. Estimators of  

1X kX

µ  and σ  are usually the sample mean == /∑ 1
k
ik iX kX  

and the average of  the moving ranges 

= −= | −∑
− 2 1
1

MR 1
k
i i ik X X

k
|  

respectively, see [10]. The last estimator is scaled by  = 2/2 (2)d π  to obtain an unbiased 
estimator for σ . With these estimations for µ  and σ  we obtain the traditional 
Shewhart individual control chart with control limits 

    
α−= +Φ −1

2

MRUCL (1 )
2 (2

k
kX

d )
 and 

α−= +Φ .1

2

MRLCL ( )
2 (2)

k
kX

d
 (1) 

2.1. The Average Moving Range Control Chart 

In [23] a more exact version of  the traditional Shewhart individual control chart has 
derived. With = / 2 (2)k kV dMR  they approximate the distribution of  σ= /2 2(k kW V )  by 
τ χ ν ν/2 2 ( ) , where   

τ= Var(W )+1k , 

k

1 1
(1 ),

2 Var(W )
ν = +  

and χ ν2 ( )  is the chi-square distribution with ν  degrees of  freedom. Using this 
approximation it follows that for , >t k − / / 2( ) ( (MRkt kX X 2))d  is approximately 
distributed as τ

+ /1 1 k  times a Student’s -distribution with t ν  degrees of  freedom. The 
Average Moving Range (AMR) control chart has control limits defined by 

α ν
τ
+ /

= + − ;AMR 2
2

1 1 MR(1 )UCL (2)
k

k
k

tX
d

  (2) 

and  

α ν
τ
+ /

= + ;AMR 2
2

1 1 MR( )LCL (2)
k

k
k

tX
d

, (3) 

where ( , )t p ν  denotes the p -quantile of  a -distribution with t ν  degrees freedom and 
π=2 (2) 2/d . This AMR control chart is more accurate than the traditional Shewhart 

individual control chart in (1): i.e. the rates of  the traditional Shewhart individual control 
chart of  falsely signalling an out-of-control situation are much larger than intended, see 
[22].  

2.2. Empirical Quantile Control Chart 

In this subsection the control limits of  the empirical quantile control chart are defined 
as in [30]. A natural estimator of  the -quantile of  the distribution function  is the 
empirical quantile , which is defined as 

q F
−1ˆ ( )k qF
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{ }}− = | ≥1ˆ ˆ( ) inf ( )k kF q x x qF , 0 <  < 1, q

where  is the empirical distribution function that puts mass ˆ kF /1 k  at each  , 
i.e. 

,iX ≤ ≤1 i k

{ }1
1

ˆ ( )
i

k
i X xk x I xF k = ≤= ,−∞ < < ∞∑ , 

With  the indicator function, i.e. I ≤{ }x yI  equals 1 if  ≤x y  holds and  otherwise. 
Hence, an obvious estimator of  the upper control limit based on the empirical quantile 
(

0

EQ ) is    
1

EQ 2
ˆ (1 )UCL kF

α−= − = ( )2(1 )k
X α⎡ ⎤−⎢ ⎥

, (4) 

with  denoting the order statistics of  the initial sample , …,  
and  the smallest integer not smaller than . The lower control limit estimated by the 
empirical quantile is defined by 

(1) (2) ( )kX X X≤ ≤ ≤ 1X kX
y⎡ ⎤⎢ ⎥ y

      ( )2
EQ 1LCL k

X α⎢ ⎥+⎣ ⎦
= , (5) 

where  denotes the largest integer not larger than .  y⎢ ⎥⎣ ⎦ y

2.3. A Control Chart based on a Bernstein Approximation 

In this subsection we introduce a semi-Bayesian method for estimating a density 
function f . From this we derive the corresponding cumulative distribution function. This 
method is introduced in [2, 5]. For technical details we refer to Appendix A.  

Assume that the density function f  is continuous and strictly positive on the interval 
 and that  is the corresponding cumulative distribution function. We choose an a 

priori density function 
,(a b) F

ψ  as an initial guess for the density function f . Based on the 
corresponding continuous cumulative distribution function Ψ , the order statistics , …, 

 are transformed on , by 
(1)X

( )kX ,[0 1] = Ψ( )Y X , such that 

(0) ( ) ( ) ( 1)0 ( ) 1 ...i i kY Y X i k Y += , = Ψ , = , , , =1. 

Because  we have that − −≤ = Ψ ≤ = ≤ Ψ = Ψ1 1( ) ( ( ) ) ( ( )) ( ( ))P Y y P X y P X y F y B =  
 is the quantile function of  the random variable 1 1( ( ))F − −Ψ = Ψ( )Y X

1

. This quantile 
function is estimated by the so called Bernstein polynomials , where m  is a 
smoothing parameter and 

( ) ( )m
kB p

< <0 p , see Appendix A. It follows that  is 
an estimate for .  

−
, = Ψ( ) ( )ˆ ( )m m

k BA kBF
1

F

The estimators for the upper and lower control limits based on the Bernstein 
approximation (BA) with a false alarm rate α  are now given by 

 α−

,= −
1( )

BA 2
ˆ (1 )UCL

m
k BAF , (6) 

and 
α−

,=
1( )

BA 2
ˆ ( )LCL

m
k BAF , (7) 

where  is defined by  
−

,

1( )ˆ m
k BAF

− −
, = Ψ ,

1( ) 1 ( )ˆ ( ( )m m
kk BA B pF )  

cf. formulas (9) and (10) in Appendix A. The control chart based on these control limits is 
denoted as the BA control chart.  
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The method described above needs an initial guess ψ . The initial guess has to be 
chosen a priori. This assumption is not necessarily unrealistic, cf. [1]. Based on process 
knowledge we can make an initial guess for the distribution of  the process characteristic. 
The described method is to ‘fine tune’ the initial guess.  

For the Bernstein approximation the smoothing parameter  has to be chosen. In 
Appendix A it is shown that we may take 

m
= .5 2m k  and round this off  to the nearest 

integer.  

3. Real Life Example 

The Bernstein approximation control chart seems to be rather cumbersome. However, 
with the use of  computers and software, methods like this can be used by practitioners. To 
show this we apply the Bernstein approximation control chart to a real life example.  

The collected data concern the part of  a printer that squirts the ink. The ink is spurt 
through a groove. The relevant quality characteristic to be measured is the depth of  the 
groove. We will study 535 observations of  this depth. For reasons of  confidentiality the 
measurements are multiplied by a constant. By studying the data, we found out that for 15 
measurements the grooves were cut by a supplier who uses a different method to cut the 
grooves. In order to obtain stability of  the process we have eliminated these data points. We 
will study the remaining data set, which consists of  520 measurements. For the calculation 
of  the control limits we use the estimators described in the previous section. We found that 
the control limits based on the average moving ranges are (cf. formulas (2) and (3))  

AMR 0 210UCL = . ,  

AMR 0 148LCL = . ,  

 and for the empirical quantiles method we obtain (cf. formulas (4) and (5))  

EQ 0 201UCL = . ,  

EQ 0 131LCL = . .  

To obtain the control chart based on Bernstein polynomials we use the normal distribution 
as initial guess to estimate the control limits (cf. formulas (6) and (7)). From formulas (9) 
and (10) it is clear that we have to estimate the parameters of  the initial guess and the 
smoothing parameter . Because we have chosen the normal distribution as initial guess 
its parameters (

m
µ  and σ ) can be easily estimated by the sample mean and sample 

standard deviation of  the 520 observations. Because . = .5 2 118 6k , we take . 
Hence the BA control limits are  

=119m

= . ,BA 0 207UCL  

= . .BA 0 136LCL  

In Figure 1 the data with the different control limits are drawn in one graph. Figure 2 
shows that the distribution of  the data is slightly skewed to the left. The autocorrelogram of  
the data in Figure 3 indicates that the data are not significantly correlated.  

Note that because we use α = .0 0027  and = 520n  the EQ control chart takes the 
largest and smallest observation as upper control limit and lower control limit, respectively. 
Hence, all observations are between these two control limits. The AMR control chart shows 



116                                                       Vermaat and Does 

= .0 206UCL
= .0 145LCL

= .0 207UCL

 
Figure 1. Depth of groove data and control limits based on the average moving 
ranges (AMR), the empirical quantiles (EQ), and the Bernstein approximation 
(BA). CL is the center line and represents the process average. 
 
 

  
Figure 2. The histogram for the depth 
of groove data. 

Figure 3. The autocorrelogram for the 
depth of groove series. 
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15 out-of-control signals and its control limits are symmetric with respect to the center line. 
The BA control chart signals only 5 out-of-control signals. To end with an in-control 
process, we eliminated these 5 out-of-control observations and we recalculated the control 
limits. Note that to recalculate the control limits we have to run the program once more. 
We iterated this process until we got no more out-of-control signals based on the BA 
control limits. Totally, we eliminated in this way 5 extra out-of-control points. For the 
remaining 510 observations we obtained as BA control limits BA  and 

BA . To obtain an in-control process based on the AMR control chart we have 
to eliminate in total 19 out-of-control points. The AMR control limits for the remaining 501 
observations are  and AMR = .0 154LCLAMR .  

In Phase II (monitoring phase) the control limits may be updated regularly as new data 
become available. This is done in the same way as in Phase I. In Chapter 5 of  [8] an activity 
plan is given for the implementation and maintenance of  a control chart.  
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4. Design of the Simulation Study 

In order to study the performance of  the control charts introduced in the previous 
sections we have conducted an extensive simulation study for some choices of  the 
distribution function  and the sample size . Based on the Phase I training sample 

, …,  the UCL and LCL are estimated. The performance of  each control chart is 
measured by calculating the average and standard deviation of  the run length – ARL and 
SDRL respectively – in Phase II. We follow [30] in the calculations of  the ARL and SDRL. 
They denote by 

F k
1X kX

ˆ kp ( , …, ) the conditional probability given the training sample, 
that a new independent random variable  from the same distribution  exceeds the 
upper control limit or is below the lower control limit. The average run length is  

1X kX
X F

=
1

1
ARL E

ˆ ( ,..., )kk X Xp
 

and the standard deviation of  the average run length 

     SDRL = 
2

1

1
2E

ˆ ( ,..., )k kp X X

⎡ ⎛ ⎞
⎢ ⎜ ⎟
⎢ ⎝ ⎠⎣

2

1

1
E

ˆ ( ,..., )k kp X X

⎛ ⎞
− ⎜ ⎟
⎝ ⎠

1
 
2

1

1
E

ˆ ( ,..., )k kp X X

⎤
− ⎥

⎦
 (8) 

Since these ARL and SDRL cannot computed directly, 10,000 training samples , …,  
are drawn. For each training sample we calculate 

1x kx
/ 1ˆ1 ( ,..., )kp x x  and / 2

1ˆ1 ( ,..., )kp x x . 
Averaging  over the 10,000 training samples gives the ARL. In more or less 
the same way we calculate the SDRL.  

/ 1ˆ1 ( ,..., )kp x x

We study the control charts in an in-control and several out-of-control situations. For 
the comparison we distinguish different shifts in the mean of  size δσ , where δ  ranges 
from 0 through 5 and σ  is the standard deviation of  the studied distribution. With δ  = 
0 we have of  course the in-control situation. Given the 10,000 training samples  
we calculate for each shift the ARL and SDRL. Based on a false alarm rate 

1 ... kx x, ,
α  equal to 

0.0027, which corresponds with the traditional σ3 -limits of  Shewhart individual control 
charts, we expect that the ARL and SDRL are around 370.  

The simulations are carried out for six different distributions, i.e. normal, Student’s , 
logistic, exponential, chi-square, and Weibull distribution and for sample sizes  equal to 
250, 500, and 1,000. Seventeen shifts in the mean of  size 

t
k

δσ  are used in the range of  0 
(0.25) 3.5, 4, and 5.  

4.1. Simulation Design for the Bernstein Approximation Control Chart 

As mentioned before, the BA control chart has developed to ‘fine tune’ an initial guess 
for the underlying density function. Based on physical properties of  a product and/or on 
experience it is generally known whether the characteristic under study has approximately a 
normal distribution or some skewed distribution. In our simulation we use this fact in order 
to differentiate between a normal and a skewed distribution.  

To distinguish two moderately deviations from a normal distribution, we use Student’s 
-distribution with 30 degrees of  freedom and the logistic distribution with scale parameter 

equal to 1. The BA control chart performance will be illustrated by using these two 
distributions and a normal distribution. The initial guess will be in these three cases the 
normal distribution. Based on the training sample 

t

, ,1 kx … x  the µ  and σ  of  the normal 
distribution (i.e. the initial guess distribution) are estimated by the sample quantities of  the 
parameters.  
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Secondly, we study three deviations from a gamma distribution, i.e. the standard 
exponential, the chi-square distribution with one degree of  freedom, and the Weibull 
distribution with shape parameter equal to 1 and scale parameter equal to 2. The initial 
guess φ  will be in these three cases a gamma density. The two parameters of  this gamma 
density are estimated from the first two moments of  the training sample (cf. [15]).  

4.2. Discussion of the Simulation Results 

The results of  the simulations are given in two complementary figures. In the first 
figure the ARL is depicted for the different estimation methods. In the second figure the 
SDRL is depicted.  

The results of  the simulations are given in Figures 4 through 12 showing the ARL and 
SDRL respectively. The shift in the mean is put on the horizontal axes and the ARL (SDRL) 
on the vertical axes. For sample sizes 250 and 500 only the results of  the AMR and the BA 
control charts are given. For sample size equal to 1,000 the graphs are added with the 
results of  the EQ control chart. For smaller sample sizes its behavior is not satisfactory (cf. 
[30]). Furthermore, we have added in all figures the theoretical (TH) ARL and SDRL 
(based on the exact exceedance probability p  for the given distribution). This was easy 
because the exact distribution was known in the simulation study.  

In Figure 4 the results for the normal distribution function are given for sample size 
 and with the normal density as initial guess. We see that the BA control chart is 

closer to the theoretical ARL and SDRL than the AMR control chart. If  the sample size  
increases, we observe that the performance lines of  both control charts converge to the 
theoretical line. In Figure 5 the control limits of  the EQ control chart are equal to the 
second largest respectively second smallest observation. The performance of  all charts is 
comparable.  

= 250k
k

In Figure 6 the results for the -distribution with 30 degrees of  freedom and sample 
size  are given. We see that the BA control chart is slightly better than the AMR 
control chart.  

t
= 500k

Figure 7 shows the results for the logistic distribution. Although the logistic 
distribution looks like a normal distribution the performance of  the AMR control chart and 
BA control chart are very bad for = 250k . This is due to the fact that the tail behavior of  
the logistic distribution is very different from the tail behavior of  a normal distribution. 
Even for large values of   the behavior of  both control charts is bad compared with the 
theoretical one. For  we observe a more regular behavior of  the ARL (and SDRL) 
for the EQ control chart, see Figure 8. 

k
= ,1 000k

 

 
Figure 4. The ARL and the SDRL for k = 250 based on an underlying normal distribution. 
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Figure 5. The ARL and the SDRL for k = 1,000 based on an underlying normal distribution. 

 
 
 

Figure 6. The ARL and the SDRL for k = 500 based on an underlying t-distribution with 30 
degrees of freedom. 
 
 
 

Figure 7. The ARL and the SDRL for k = 250 based on an underlying logistic distribution. 
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Figure 8. The ARL and the SDRL for k = 1,000 based on an underlying logistic distribution. 

 
 

 
Figure 9. The ARL and the SDRL for k = 250 based on an underlying exponential 
distribution. 
 
 

 
Figure 10. The ARL and the SDRL for k = 1,000 based on an underlying exponential 
distribution. 
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Figure 11. The ARL and the SDRL for k = 250 based on an underlying Weibull distribution. 
 
 

 
Figure 12. The ARL and the SDRL for k = 1,000 based on an underlying Weibull 
distribution. 
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In Figures 9 and 10 we show the results for the exponential distribution function for 
sample sizes  and . We see that for a training sample with  
the performance of  the BA control chart is much better than for a training sample with 

. The same pattern holds for a chi-square distribution. This can be explained by the 
fact that the estimators of  the parameters of  the initial guess, i.e. the gamma distribution, 
need a lot of  data to be accurate and unbaised, (cf. [15] p. 358). More data lead to a more 
accurate initial guess, which implies a better performance of  the BA control chart. We also 
observe in Figures 9 and 10, that the BA and theoretical control chart have a maximum in 
the ARL and SDRL around 

= 250k = ,1 000k = ,1 000k

= 250k

δ = .0 25 . This maximum is due to the fact, that these control 
charts estimate an LCL within the support of  the exponential distribution. If  the process 
shifts towards the UCL when δ  increases, the LCL is of  course harder to violate and the 
UCL easier. Since the density of  the exponential is larger near the LCL than near the UCL, 
this causes that the probability of  an alarm decreases and hence the ARL increases for 
small δ . Because the estimates of  the LCL in the AMR control chart typically fall outside 
the support of  the exponential distribution, this control chart does not show this 
phenomenon. Note that the behavior of  the AMR control chart for δ = 0  is really bad. 
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In Figure 11 and 12 the results for a Weibull distribution have drawn for sample sizes 
 and . We see that the results for both the BA and AMR control charts 

for this distribution are bad. For the BA control chart this is due to the fact that the initial 
guess (i.e. a gamma distribution) differs too much from the Weibull distribution as 
theoretical distribution. In this case only the performance of  the EQ control chart is 
satisfying for the ARL with .  

= 250k = ,1 000k

= ,1 000k

5. Conclusion 

In this study we have applied a semi-Bayesian method for the estimation of  the control 
limits of  a Shewhart individual control chart. The control chart based on the average of  the 
moving ranges performs well for normally distributed observations. If  the observations are 
no longer normally distributed the behavior becomes quite bad. In this situation 
non-parametric (e.g. empirical quantiles) control charts perform quite well for more than 
1,000 sampled observations. In situations of  moderate sample sizes (i.e. 250 to 1,000) we 
suggest to use the Bernstein approximation method. The purpose of  this method is to ‘fine 
tune’ an initial guess of  the underlying density function. With this method the control chart 
is robust against small violations of  normality. We have also shown that if  the initial guess 
is a reasonable approximation of  the underlying distribution, the performance of  the new 
control chart is better than the AMR control chart. If  on the other hand the initial guess is 
a bad approximation of  the underlying distribution the results of  the new control chart are 
not good enough, but nevertheless better than the AMR control chart.  
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Appendix A 

The Bernstein Approximation 

Suppose we have a sample 1 , …, k . Denote the sample order statistics by 

(1) < (2) < < ( )k . Suppose 
X X

X X X ψ  is an a priori density function for f  and  the 
corresponding cumulative a priori distribution function for the cumulative distribution . 
Assume that 

Ψ
F

f  is continuous and strictly positive on the interval ,(a b) . Transform the 
order statistics , ,  by the transformation (1)X ( )kX = Ψ( )Y X , such that 

+= , = Ψ , = , , , = .(0) ( ) ( ) ( 1)0 ( ) 1 ...i i kY Y X i k Y 1  

Because  we have that 1 1( ) ( ( ) ) ( ( )) ( ( ))P Y y P X y P X y F y− −≤ = Ψ ≤ = ≤ Ψ = Ψ B =  
 is the quantile function of  the random variable 1 1( ( ))F − −Ψ = Ψ( )Y X

)

i

. This quantile 
function is estimated by the so called Bernstein polynomial approximation of  degree 

 defined by +( 1k
1

1
( )

0

1
( ) (1 )

   

k
i k

k i
i

k
B p Y p p

i

+ + −

=

+⎛ ⎞
= −∑ ⎜ ⎟

⎝ ⎠
 

and < <0 1p . Let −= Ψ 1( )k kH B  then − −
, = = Ψ1 1ˆ ( )k kk BA H BF  is used to estimate .  F

An improvement of  the Bernstein approximation can be established by introducing a 
smoothing parameter , cf. [2]. First, split the original sample into  
subsamples of  size  each. Then, the approximation of   of  the quantile function of  

 is defined by 

m !/[ !( )!]k m k m−
m B

Y
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α α
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≤ ≤ ≤ ≤
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k m
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B p B p Y Y

m
, , . (9) 

This can be rewritten as an L-statistic 

       ( ) 1 1
1 ( )

1  

1 1
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m m j m j k m jm
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i k i

m j m j
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kj
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.

Ψ

 (10) 

From this we obtain , as an estimator of  . Differentiating 
−

, = 1( ) ( )ˆ ( )m m
k BA kBF F ,

( )ˆ m
k BAF  

gives  which is an estimator for 
,

ˆ
k BAf
( )m

f . 

For the choice of  the smoothing parameter , we use the rule of  thumb determined 
in [2]   

m
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w    = 1/22.6m k v (11) 

and round this off  to the nearest integer, where v = 
1

fψ −  with 
1

⋅  the -distance, 
 if  the number of  sign changes of  

1L
=1w ψ − f  is equal to 1 and = 2w  if  the number of  

sign changes is greater than 1. A sign change occurs if  ψ − f  > 0 changes in ψ − f  < 0 
or vice versa on the support of  ψ − f . Note that ≤ ≤0 2v .  

For practical purposes we suggest to take = 2w  (because most of  the time we do not 
know the number of  sign changes of  ψ − f ) and =1v  (which puts a lot of  weight on the 
data). This means that we choose = .5 2m k  and round this off  to the nearest integer (cf. 
formula (11)).  

In [2] an example is given how the Bernstein approximation works in practice. 
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