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A Modified Quantile Estimator Using

Extreme-Value Theory with Applications

M.B. Vermaat, R.J.M.M. Does and A.G.M. Steerneman

Abstract: Reliable predictions by means of quantiles constitute one of the most important
tasks not only in statistics but in entire science. Quantiles may be estimated by using Extreme-
Value Theory (EVT). However, the properties of many estimators based on this theory depend
heavily on the actual location. In this paper modified estimators for the quantiles are derived,
the properties of which are less sensitive with respect to location. Moreover, these modified
quantile estimators are also symmetric with regard to the mean for symmetric distributions,
which is not the case for some of the estimators based on the EVT. The modified quantile
estimators are a limiting result of an infinity shift of location of the estimators proposed by
Dekkers et al. (1989). The results may be used in establishing control limits for Shewhart
control charts.
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1 Introduction

The Extreme-Value Theory (EVT) deals with modelling the extremes. It can be applied
to predict the occurrence of rare events. The prediction of flood levels, large jumps in
the stock markets and extreme insurance claims are application areas of EVT. These
application areas, i.e. insurance and finance, are treated in the textbook by Embrechts
et al. (1999). A characteristic feature of these areas is the need for so-called one-sided
predictions. Industry is another application area of the EVT. However, in industrial
application often two-sided predictions are needed which require the determination of
quantiles of a large and a small order.

Estimation of quantiles of large orders using the EVT is described in Dekkers et al.
(1989), see also Weissman (1978) and Boos (1984). The quantile estimators of Dekkers et
al. (1989) applied to quantiles of small order are for certain distributions, e.g. the uniform
distribution, not quite satisfactory. It appears that for the uniform distribution on [0, 1]
the estimated quantiles of a large order 1 − q (0 < q < 0.5) and of the corresponding
small order q are not symmetric with regard to the average (i.e. 0.5). The reason for
this is as follows. The quantile of small order is very close to zero. Dekkers et al.
(1989) use a log-transformation to estimate the quantiles. The log-function is very steep
in the neighborhood of zero, which causes asymmetry in the estimated small and large
quantiles. To tackle this problem, a large shift of location is performed. We recalculate
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the quantiles for the transformed data. To get the quantiles for the original data, an
inverse transformation of the calculated quantiles is executed.

The question is how large this shift of location has to be in order to get appropriate results.
In other words, what happens if the shift of location goes to infinity? In this paper we
derive the limiting values for quantile estimators for large and small order, respectively.
As an illustration we calculate the quantiles of a uniform distribution on [0, 1] based on
the work of Dekkers et al. (1989) as well as the modified estimator.

This paper is organized as follows. In the next section we describe the estimation method
for quantiles of large and small order based on Dekkers et al. (1989). In the subsequent
section the modified estimators are introduced by a theorem. The theorem is proven in
the appendix. In the next section an example is given using a uniform distribution on
[0, 1]. We finish the paper with a conclusion.

2 Extreme-Value Theory

In this section we follow Dekkers et al. (1989) for the quantile estimation. Consider an
independent sample X1, . . . , Xn of a certain distribution F . We will assume throughout
this paper that F is absolutely continuous. Let X(1) < X(2) < · · · < X(n) denote the order
statistics of this sample. Suppose that the sample X1, . . . , Xn is such that the largest m
and smallest m order statistics are all either on the positive reals or on the negative reals.
Define

M (r)
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1

m

m∑
j=1

(
log

X(n−j+1)
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(1)
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1

m
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(
log
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where the integer r takes the values r = 1, 2 and m is the number of upper respec-
tively lower order statistics used in the estimation of quantiles of large and small order
respectively.

The Extreme-Value Theory deals with the tail behavior of distributions. These tails can
be modelled by an extreme-value distribution, which is determined by an extreme-value
index γ (cf. Dekkers et al. (1989)). If we do not make any assumptions on γ, we may use
the moment estimator for it. For quantiles of large order it is defined by

γ̂n = M (1)
n + 1 − 1
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n

}−1

(3)
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and for quantiles of small order we can define its equivalent

δ̂n = L(1)
n + 1 − 1

2

{
1 − (L

(1)
n )2

L
(2)
n

}−1

(4)

Furthermore, the (1−q)-quantile of the distribution function F for 0 < q < 1
2

is estimated
in Dekkers, Einmahl and De Haan (1989) as

F̂−1
n,DEH(1 − q; γ̂n) = X(n−m) +

(
m
nq

)γ̂n − 1

γ̂n

(1 − min(γ̂n, 0))X(n−m)M
(1)
n (5)

The q-quantile of the distribution function F for 0 < q < 1
2

is estimated as

F̂−1
n,DEH(q; δ̂n) = X(m+1) +

(
m
nq

)δ̂n − 1

δ̂n

(1 − min(δ̂n, 0))X(m+1)L
(1)
n (6)

3 Convergence of the Quantiles

In this section we state our main result. First we shift the original observations with a
constant K. For the transformed observations we estimate the quantiles with Dekkers’
et al. (1989) method. Applying the inverse transformation we obtain estimators for the
quantiles of the original data. In Theorem 1 we formulate the result for K → ∞.

Theorem 1 Define X∗ = X + K, where X is a random variable with an absolutely
continuous probability distribution function F and K is a constant. Suppose that m

nq
≥ 1

and suppose that the largest m and smallest m order statistics are all either on the positive
reals or on the negative reals.

a) If K → ∞ then the modified (1 − q)-quantile estimator with 0 < q < 1
2

is
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and
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b) If K → ∞ then the modified q-quantile estimator with 0 < q < 1
2

is
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The proof of Theorem 1 is given in the appendix.

Remark: A necessary restriction in Theorem 1 is that that m
nq

≥ 1, otherwise D( m
nq

) and

D̄( m
nq

) in (8) and (10) do not converge for all Gn and Ḡn in (−∞, 1
2
), respectively. This

restriction follows to a certain extent from Dekkers et al. (1989). They distinguish two
situations:

1. finite case (Theorem 4.1 in Dekkers et al. (1989)): the number m of order statistics
is fixed, m > c with c ∈ (0,∞) and suppose that q = qn → 0, nqn → c, for n → ∞;

2. infinite case (Theorem 5.1 in Dekkers et al. (1989)): the number m of order statistics
is not fixed. Suppose qn → 0, nqn → ∞ (n → ∞) and m(n) = nqn.

Further De Haan and Rootzén (1993) reported that if q < 1
n

nothing can be done unless
one imposes extra conditions on F , hence the requirement nq > 1. This restriction in
combination with the two situations mentioned implies the prerequisite m

nq
≥ 1. De Haan

and Rootzén (1993) made extra assumptions to analyse large quantile estimators if q < 1
n
.
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4 Application

By monitoring industrial processes, we want to distinguish variation of ‘common causes’
from variation of ‘special causes’ (cf. Does et al., 1999). A well-known tool in monitoring
is the control chart, which can be of various types. A control chart consists of a graph with
time on the horizontal axis against a control characteristic (an individual measurement
or a statistic such as mean or range) on the vertical axis. In this graph an upper control
limit (UCL) and a lower control limit (LCL) are drawn.

An industrial production process is called statistically in-control if the values of the control
characteristic are from one and the same desirable distribution. The interval between the
control limits of a control chart constitutes a highly probable prediction in case the process
operates in-control and any observation outside the interval indicates the occurrence of
a ‘special cause’. Control charts provide easy checks on the actual state of the process.
The determination of the control limits is a research topic, which originates from Walter
Shewhart (1931).

In Vermaat et al. (2003) EVT is used to determine control limits of control charts regard-
ing the upper and lower control limit as quantiles of large and small order, respectively.
Suppose we have X1, . . . , Xk from a uniform distribution on [0, 1], then for Shewhart-type
control charts the control limits guarantee a false alarm risk of q = 0.00135 implying that
quantiles of oder 0.99865 and of 0.00135 are needed.

The control limits based on the estimators by Dekkers et al. (1989) are defined by (see
(6) respectively (5))

LCLDEH = F̂n,DEH(q, γ̂n)

and

UCLDEH = F̂n,DEH(1 − q, γ̂n)

The control limits based on the modified estimators are defined by (see (9) respectively
(7))

LCLMDEH = F̂n,MDEH(q, γ̂n)

and

UCLMDEH = F̂n,MDEH(1 − q, γ̂n)

To illustrate the difference for both methods, we sample 10,000 observations from a uni-
form distribution on [0, 1]. Then we calculate the control limits based on both meth-
ods. We repeat this procedure 10,000 times and calculate the average of the control
limits. For the control limits based on the estimators of Dekkers et al. (1989) we
get LCLDEH = 0.000675 and UCLDEH = 0.998617. For the modified method we get
LCLMDEH = 0.001388 and UCLMDEH = 0.998617. We see that the results for both UCLs
are the same and are close to the theoretical value 0.99865. However, we see the LCLDEH

differs substantially from the theoretical value of 0.00135. The LCLMDEH is close to this
value. Moreover, the LCLMDEH is symmetric around 0.5 compared with the UCLMDEH.
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5 Conclusions

In this paper quantile estimators of Dekkers et al. (1989) are evaluated when a shift of
location is applied. If the data are translated and the quantiles of large and small order
are calculated, the reverse translated quantiles converge, and modified quantile estimators
arise. The advantage of these new quantile estimators is that the corresponding estimates
of large and small order are symmetric around the mean for a symmetric distribution, e.g.
the uniform distribution. This is not the case for the estimator proposed by Dekkers et
al. (1989). In our theory one can also calculate quantiles of negative values. Dekkers et
al. (1989) considered only positive values and, if not, they advise to apply a simple shift.
However, a shift does change the properties of the estimator, it is sensitive with respect
to location changes. Our modified estimator is resistant in this respect. The modified
estimator may be applied for establishing control limits.

Acknowledgements: The authors thank the referees and the editor for their useful
comments and suggestions.

Appendix

1 Proof of Theorem 1

a) Quantile of large order:

By replacing X with X∗ the definitions of γ̂n in (3) and M
(r)
n in (1) are modified in γ̂∗

n and

M
(r)∗
n . The (1− q)-quantile of the distribution function of X∗ can be easily obtained from

(5) by replacing X(n−m), γ̂n and M
(1)
n by X∗

(n−m), γ̂
∗
n and M

(r)∗
n , respectively. A modified

estimator of the (1 − q)-quantile of the distribution function F of the original random
variable X is derived as the limiting value for K → ∞ of

F̂−1
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Now we write

log
X∗

(n−j+1)

X∗
(n−m)

= log
X(n−j+1) + K

X(n−m) + K

= log

(
1 +

X(n−j+1) − X(n−m)

X(n−m) + K

)
= log(1 + CjH)

where Cj = X(n−j+1) − X(n−m) and H = 1
X(n−m)+K

.

Since K → ∞ we have H → 0, and hence

lim
H→0

log(1 + CjH)

H
= Cj

This implies that

lim
H→0

1
m
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j=1

log(1 + CjH)

H
=

1

m
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Cj
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log(1 + CjH)

)2

H2
=

1

m

m∑
j=1

C2
j

Hence, we find that
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By substitution of the Cj we get

lim
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(M
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M
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Note that 0 < Qn < 1 with probability one. Further, we know that

lim
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1
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Based on these findings we conclude from (11) that
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lim
K→∞

γ̂∗
n = 1 − 1

2(1 − Qn)
= Gn (12)

with Gn ∈ (−∞, 1
2
) with probability one. Using (12) we obtain that(
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It is supposed that m
nq

≥ 1, so D( m
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) ≥ 0 and bounded, with probability one. Now we
have
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In order to evaluate (13), we focus on X∗
(n−m)M

(1)∗
n . Using the same notation for Cj and

H as before, we derive that

lim
K→∞
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Hence, if K → ∞ then F̂−1
n,DEH(1 − q; γ̂∗

n; K) converges to

F̂−1
n,MDEH(1 − q) = X(n−m) + D

(
m

nq

)
1

m

m∑
j=1

(
X(n−j+1) − X(n−m)

)

with D( m
nq

) as in (8).

b) Quantile of small order:

The proof for quantiles of small order goes analogously. �
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