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The standard method for assessing a measurement system’s precision is a gauge R&R study. Such a study

involves an experiment in which each of a number of objects is measured multiple times. From the results,

the spread of multiple measurements on a single object (the measurement spread) can be estimated. A

serious complication is encountered when objects are affected by the measurement or when the true value of

objects is variable. Such measurements are called destructive. Applying the standard gauge R&R set-up to

destructive measurements is either impossible or results in an overestimation of measurement spread. This

article studies alternative set-ups, which can be applied to destructive measurements if certain conditions

hold. Even if required conditions are not completely met, the proposed approaches will at least lead to a

smaller overestimation of measurement spread.
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Introduction

S
TATISTICAL methodologies for quality improve-
ment, such as statistical process control, the

Shainin System, and the Six Sigma program, heav-
ily depend on data in order to identify opportunities
for improvement. As a consequence, the reliability of
the data is considered an important issue. The three
aforementioned improvement strategies explicitly re-
quire the experimenter to verify the precision of his
measurement procedures.

The standard method for assessing the precision
of a measurement system is a so-called gauge repeata-
bility and reproducibility study (gauge R&R study).
Such a study can be applied when the measurement
system in question results in measurements on a
continuous scale. Measurements are collected from a
crossed design: each of a certain number of products
(typically 10) is measured several times (typically
twice) by a number of operators (typically 3). The re-
sults are analyzed using analysis of variance models,
in which certain variance components are associated
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with different sources of measurement spread (be-
tween operators, operator-product interaction, and
within-operators error).

It is crucial for a standard gauge R&R study that
objects can be measured more than once. If this is
not the case, the measurement is called destructive.
If repeated measurements on a single object are not
possible, the measurement spread is necessarily con-
founded with the object-to-object variation. This ar-
ticle explores the possibilities of gauge R&R studies
in the situation of destructive measurement systems.
The paper is limited to the case of continuous mea-
surements.

Some Examples

In the course of this paper, we shall consider var-
ious examples.

I Weight of Biscuits The weight of biscuits is mea-
sured using a scale. The weights can be considered
constant in time, and weighing a biscuit has no effect
on its weight. Therefore, the measurement is nonde-
structive.

II Strength of Biscuits In order to measure the
strength of biscuits, pressure is exerted onto them.
The pressure is slowly increased until the biscuit
breaks. The pressure at which the biscuit breaks is
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the measured strength. The measurement is destruc-
tive because a biscuit is lost after its strength is de-
termined and cannot be measured a second time.

III Pressure in Pipelines The pressure in water
pipelines can be measured using ordinary pressure
meters. To determine the precision of such a meter,
though, one comes across the complication that the
water pressure continuously fluctuates. As a conse-
quence, measurement variation is confounded with
variation in the water pressure.

IV Flight Times of Paper Helicopters A popular case
to illustrate experimental design and other statisti-
cal methods in the classroom uses helicopters made
of paper (see Box and Liu (1999)). An important
characteristic of these helicopters is their flight time.
A flight time is measured by releasing a helicopter
from a predesignated height and measuring with a
stopwatch the lapsed time before it hits the floor. It
is not possible to obtain multiple measurements from
a single person from a single flight. Therefore, the ex-
perimenter should measure different flights. However,
because the flights themselves will be different, part
of the measured variation in flight times is not due to
the measurement procedure but consists of variation
between different flights.

Gauge R&R Studies and
Destructive Measurements

Measurement

Each statistical study concerns experimental
units, the objects of which properties are studied.
The collection of all units is called the population.
Units in the population can be classified according
to a certain property (such a classification is some-
times called a natural variable). Measurement maps
this classification onto a numerical system. Taking
biscuits as units (example I), we could consider the
property weight. By measuring the biscuits, we as-
sign a number to each biscuit (its weight). On the
one hand, there exists an empirical relation among
the biscuits (some biscuits are heavier than others).
On the other hand, we have mathematical relations
among the weight values (such as the ordering rela-
tion and distance metric that are defined on R), and
these mathematical relations are intended to reflect
the empirical relation among the biscuits.

We arrive at the following definition. Themeasure-
ment of a property of a unit is the assignment of a
numeral to that unit, which reflects a classification of

the units according to the property under study (cf.,
definitions by Lord and Novick (1968), Allen and Yen
(1979), Wallsten (1988)). In this paper, we consider
only measurement procedures that use a continuous
scale, in which case the numerals are an element of
R or a subset thereof. (In fact, measurements are on
a discrete scale at best; we take the term ‘continuous
measurement’ as a façon de parler for a measure-
ment of sufficiently high resolution.) A measurement
could then be described as a map Y : U → R, where
U is the collection of units to which the measurement
procedure applies.

To understand the problem of gauge R&R studies
for destructive measurements (and—as we shall see—
for nondestructive measurements as well), it is im-
portant to realize that objects evolve in time. There-
fore, we modify our definition of units slightly and
regard a single object that is considered on two mo-
ments in time as two different experimental units.
For this reason, we denote the elements of U as ui,t,
i referring to a particular object and t indexing time.
The measured value of a unit ui,t ∈ U is denoted
Y (ui,t).

In examples I and II, a unit is a certain biscuit i
considered at time t. In example III, a unit ui,t is a
pipeline i and the water that is in it at time t.

Gauge R&R Studies

Because many measurement procedures suffer
from a random measurement error, part of the map,
Y , is stochastic. We define

FY |u(y) = P (Y (u) ≤ y |u) for fixed u ∈ U,
which defines the probability distribution of the ran-
dom measurement error. The usefulness of a mea-
surement system is, to a large extent, determined
by properties of FY |u. Measurement system analy-
sis typically distinguishes the usefulness of a mea-
surement system into its accuracy and its precision
(AIAG (2002)).

Accuracy relates to the extent to which the mea-
surement suffers from a bias. For any u ∈ U , let
µu = EY |u(Y (u)) =

∫
y dFY |u(y), the expected value

of a measurement of a unit u. Bias is the difference
between µu and the object’s true value, T (u) (i.e., a
reference value that would be assigned to the object
by a standard and authoritative measurement sys-
tem). In the remainder of this article, the following
assumption is made:

(a) Constancy of bias: µu − T (u) is constant over
u (linearity) and constant in time (stability).
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In this paper, we shall not elaborate on accuracy.

Precision relates to the variability of a measure-
ment system. We define the measurement spread of
measurement Y for unit u ∈ U as the square root of

σ2
u = EY |u (Y (u)− µu)

2
. (1)

Usually, it is assumed that

(b) Homogeneity of measurement error:

FY |ui,t
(y − µui,t

)
= FY |uj,s

(y − µuj,s
), for all ui,t, uj,s ∈ U,

that is, the distribution of the measurement er-
ror is identical for all units that are measured.

If (b) holds, the measurement spread is indepen-
dent of the unit that is measured, and we have
σ2

u = σ2 for all u ∈ U . We shall assume through-
out this paper that (b) holds.

If measurements on an object u are conducted un-
der identical circumstances (the same person, imme-
diately after each other), the precision of a measure-
ment is at its best. The corresponding precision is
called repeatability. If measurements are conducted
under varying circumstances, precision will usually
be worse. Reproducibility is the precision of measure-
ments during which certain specified conditions vary
in a realistic manner. A gauge R&R study (Burdick
et al. (2003)) is a statistical study aimed at quantify-
ing a measurement system’s repeatability and repro-
ducibility. In its typical setup, it involves an exper-
iment in which a number of objects are measured
multiple times by each of a number of operators.
Measurement spread is decomposed into three vari-
ance components: σ2 = σ2

O + σ2
PO + σ2

e , where σ2
O

is the variance that can be attributed to systematic
differences among operators; σ2

PO is the variance re-
sulting from additional differences among operators
per object; and σ2

e the remaining error variance. Re-
peatability relates to σ2

e , reproducibility to σ2
O and

σ2
PO.

The Fundamental Problem of
Gauge R&R Studies

The fundamental problem of gauge R&R studies
is that, in general, it is impossible for fixed ui,t ∈ U
to observe more than one realization of Y (ui,t) and,
therefore, that it is impossible to estimate σ2 without
making some assumptions.

The fundamental problem of gauge R&R studies
is solved in standard (nondestructive) gauge R&R
studies by making two homogeneity assumptions:

(c) Temporal stability of objects: for an object i,
T (ui,t) = T (ui,s) for any two moments t, s in a
relevant time interval (and therefore, given (a),
µui,t = µui,s). In words: it does not matter at
which time objects are measured.

(d) Robustness against measurement: T (ui,t) is
equal before and after object i is measured. In
words: objects are not affected when they are
measured.

If (c) and (d) hold, the distribution of the mea-
surement error can be estimated by collecting mea-
surements Y (ui,tj ), i fixed, j = 1, . . . , k. Then σ2 can
be estimated, for instance, by

µ̂ =
1
k

k∑
j=1

Y (ui,tj ),

and

σ̂2 =
1

k − 1

k∑
j=1

(
Y (ui,tj

)− µ̂)2
.

In practice, one will involve multiple objects, i = 1,
. . . , n, and compute a pooled estimate for σ. In ex-
ample I, we can assume both (c) and (d) and perform
a standard gauge R&R study.

Destructive measurements are those measurement
procedures for which either (c) or (d) does not
hold. The measurement procedure for determining
the strength of biscuits is an example of a measure-
ment for which (d) does not hold. Measuring pressure
in pipelines is an example for which (c) does not hold.

In the preceding setup, we have limited experi-
mental units to objects. If the units under study are
other phenomena, U should be indexed differently.
For example, the units of interest in example IV are
flights. We could denote flight j of helicopter i as
ui,j and the corresponding measured flight time as
Y (ui,j). In the remainder of this paper, we assume
that units are objects considered at moments in time.
The theory could be extended in a straightforward
manner to populations with a different structure.

Solutions for the
Fundamental Problem

For destructive measurements, the fundamental
problem can be solved if the homogeneity conditions
(c) and (d) can be replaced with alternative homo-
geneity conditions that do hold and that amount to
the same effect. This section proposes a number of
homogeneity conditions that could replace (c) and
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(d) and thus enable estimation of σ. In practice,
homogeneity conditions will not hold perfectly. The
consequences of this fact will be studied in the next
section.

If (c) holds (temporal stability), there is no need to
differentiate between different time instants, and we
can take U = {ui}i=1,...,n, dropping the time index.

Homogeneity of Objects

In the situation where we have temporal stability
but not robustness against measurement (assump-
tion (c) holds, but (d) does not), we could exploit a
potential (near) homogeneity across objects.

(e) Homogeneity of objects: there is a subset H ⊂
U for which T (ui) = T (uj) for all ui and uj

in H. In words: some objects can be consid-
ered identical with respect to the measurement
under study. Moreover, (c) is assumed to hold.

If (e) can be assumed, σ2 can be estimated from
a sample u1, . . . , uk from H by

µ̂ =
1
k

k∑
i=1

Y (ui),

and

σ̂2 =
1

k − 1

k∑
i=1

(Y (ui)− µ̂)2 .

If (e) does not hold for the objects of interest, we
might—with some ingenuity—be able to find some
alternative objects, A = {vi}i=1,...,k, beyond the
units under study (A 	⊂ U) to which the measure-
ment procedure can be applied, for which assumption
(e) does hold (H replaced with A) and for which the
following homogeneity assumption can be made:

(f) Representativeness of alternative objects:

FY |vi
(y − µvi)
= FY |u(y − µu) for each vi ∈ A

and for arbitrary u ∈ U . In words: assumption
(b) extends to the alternative objects vi ∈ A.

Instead of measuring the strength of biscuits (ex-
ample II), we could measure the strength of certain
plastic bars, which are known to be very homoge-
neous (assumption (e), H replaced with A), whence
they have approximately identical strengths. Choos-
ing bars that break at more or less the same pres-
sures as the biscuits, we may as well assume that
the distribution of the measurement error while mea-
suring these bars is indicative for the measurement

error while measuring biscuits (assumption (f)). In
the case of the paper helicopters (example IV), a
similar trick is possible: one could record on video a
number of helicopter flights (example IV). Measure-
ment spread could be determined by playing back
each recording several times and measuring the du-
ration of the flight. Phillips et al. (1997) use a similar
strategy to determine the measurement variability of
a material strength test.

Correcting Heterogeneity Across Objects

Still assuming that we have temporal stability (as-
sumption (c)) but not robustness against measure-
ment (d), we study what we can do if the trick above
(replacing (d) with (e)) does not work. The idea is
to model the heterogeneity across objects and correct
for it, so that the objects are made homogeneous in
an artificial manner.

(g) Patterned object variation: T (ui) = f(i) for all
ui in a subset H of U , with f a function that
has a limited number of parameters. In words:
the variation across the objects follows a certain
pattern. Moreover, (c) is assumed to hold.

The pattern could be a polynomial function, such
as f(i) = β0 + β1i for successive products i = 1, 2,
. . . , k, or positional differences among objects. Also,
moving average or autoregressive models can be con-
sidered. Given that the variation of the units is com-
pletely determined by this pattern (as assumption
(g) states) and given a model f̂ for this pattern, the
measurement error σ can be estimated by

σ̂2 =
1

k − p
k∑

i=1

(
Y (ui)− f̂(i)

)2

,

with p the number of parameters of function f that
must be estimated and ui, i = 1, . . . , k a sample from
H.

Suppose that, for a certain sequence of biscuits,
the strength increases following a linear trend:

T (ui) = f(i) = β0 + β1i, i = 1, 2, . . . , k, (2)

with ui the ith biscuit in the sequence. We can esti-
mate the parameters of the pattern f by

β̂1 =
∑k

i=1 Y (ui)(i− ī)∑k
i=1(i− ī)2

,

and

β̂0 = Y (ui)− β̂1ī.
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Thereupon, σ2 can be estimated by

σ̂2 =
1

k − 2

k∑
j=1

(
Y (uj)− f̂(j)

)2

, (3)

with f̂(j) = β̂0 + β̂1j. Of course, in practice, the
strength of a sequence of biscuits does not precisely
follow a model such as Equation (2); there will also
be some random variation. The implications of this
fact will be studied in the next section.

Comparison to a Nondestructive
Measurement Procedure

In the situation that (d) does not hold, it might
be possible to find an alternative measurement pro-
cedure that is not destructive. If an experimenter is
willing to determine the precision of the destructive
measurement system anyway, he can do so with the
help of this nondestructive measurement system.

(h) There is an alternative measurement procedure
for which (d) holds. Moreover, (c) is assumed
to hold.

We select a sample of k objects and do a stan-
dard gauge R&R study on them using the alterna-
tive measurement procedure. This allows us to es-
timate the variance σ2

P of the objects’ true values.
Next, all objects are measured once using the mea-
surement procedure of interest. The variance of these
measurements, after subtracting σ̂2

P , estimates σ2.

As an example, consider the determination of the
thickness of phosphor layers on displays. This thick-
ness can be determined with the help of a device
that sends a ray of light through the display and
measures how much light is blocked. Due to its im-
mobility, this nondestructive measurement system
cannot be used, however, on the site where it is
needed. For this reason, the operators use an alterna-
tive measurement procedure during manufacturing,
in which the phosphor in a specified area is scraped
off and weighed. Because this (destructive) measure-
ment procedure was to be used for manufacturing, its
precision needed to be assessed. The operators used
the procedure described above.

Comparison to a Perfect Destructive
Measurement Procedure

Suppose we have an alternative, destructive mea-
surement procedure for which the measurement
spread is practically zero (expensive laboratory
equipment).

(i) There is an alternative measurement procedure
X for which X(ui) = T (ui) for all ui ∈ U .
Moreover, (c) is assumed to hold.

We select a sample of k objects and randomly split
it in two subsamples. One subsample is measured us-
ing the alternative procedure. The variance of these
measurements gives us an estimate of the variance
σ2

P of the objects in the sample. The other subsam-
ple is measured using the procedure of interest. The
variance of these measurements, minus σ̂2

P , estimates
σ2.

Correcting for Temporal Instability

If temporal stability (assumption (c)) does not
hold, one could model the fluctuation over time and
correct for it:

(j) Patterned temporal variation: T (ui,t) = f(i, t)
for all ui,t in a subset H of U , with f a function
that has a limited number of parameters. In
words: the variation over time of objects follows
a certain pattern.

Given multiple measurements at moments t1, . . . ,
tk of a single object i, the measurement error can be
estimated by

σ̂2 =
1

k − p
k∑

j=1

(
Y (ui,tj

)− f̂(i, tj)
)2

.

In practice, one can involve multiple objects and
pool the estimated variances. Following this ap-
proach, we can estimate an ARIMA model T (ut) =
f(t) that describes the pressure T (ut) in a pipeline
at time t (example III) and take the variance of the
residuals of this model as an estimate for σ2.

Measuring Reference Material

If either (c) or (d) does not hold, it might be possi-
ble to obtain units for which there is a perfect mea-
surement available, i.e., their true value is known.
Typically, this is the case when one has at one’s dis-
posal calibration material with known true value.

(k) Known true value: T (vi,ti) is known for units
vi,ti ∈ A, i = 1, . . . , k. In words: we can find al-
ternative units the true value of which is known.
Moreover, (f) is assumed to hold for A, and the
bias of the measurement system is assumed to
be zero (or known, so that it can be corrected
for).
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Measurement error can be estimated by

σ̂2 =
1
k

k∑
i=1

(Y (vi,ti
)− T (vi,ti

))2 . (4)

It is possible to buy plastic bars that break at a
specified pressure (example II). These bars could be
measured instead of biscuits. The measured spread,
estimated from Equation (4), could be assumed to
represent the measurement spread when measuring
the biscuits’ strength.

Note: if the bias of the measurement system is
unknown, it can be estimated from

b̂ =
1
k

k∑
i=1

(Y (vi,ti)− T (vi,ti)) .

The measurements should be corrected for the esti-
mated bias, and the scalar 1/k in Equation (4) should
be replaced with 1/(k − 1).

What Happens if Homogeneity
Conditions Do Not Hold Perfectly?

In the preceding section, we have seen that—in or-
der to overcome the fundamental problem of gauge
R&R studies—the experimenter must make one or
more of the assumptions (c) through (k). Often, how-
ever, these assumptions hold only to a certain ex-
tent. In general, the consequence of this is that the
obtained estimate for measurement spread overesti-
mates the true measurement spread.

Consider, for instance, the biscuits example (ex-
ample II). Suppose that we have assumed that the
strength in a certain sequence of biscuits follows the
model in Equation (2). Acknowledging that the vari-
ation in the strength of the biscuits also has a random
component, we describe the true strength of biscuit
i by

T (ui) = β0 + β1i+ εi,

with εi independent drawings from the N (0, σ2
P ) dis-

tribution. If this model gives an accurate representa-
tion of reality, then the estimator defined in Equation
(3) has as its expected value not σ2 but

E(σ̂2) = σ2 + σ2
P ,

i.e., random object-to-object variation and measure-
ment spread are confounded. The good news is that
the estimated measurement spread is on the safe side:
if the estimated measurement spread is satisfactory,
then so will be the true measurement spread. The
negative effect of the overestimation of the measure-
ment spread is that the chance increases that the

measurement system is falsely judged inadequate. To
reduce this chance, efforts should be made to obtain
units that meet the appropriate ones of the assump-
tions (c) through (k) to a larger extent. This is the
subject of the next section.

To be clear: it is theoretically impossible to dis-
tinguish object variation from measurement spread if
the homogeneity assumptions do not hold perfectly,
simply because this information is not contained in
the data that can be collected. Bergeret et al. (2001)
claim to have found a method to accomplish this dis-
tinction anyway. Their method involves a two-stage
experiment that is modeled using nested analysis of
variance models. The flaw in their method is that
their MSp&e should be written MSp&e&loc because
it not only confounds parts variation and repeata-
bility but location-to-location variation as well. The
variance of the means of the units might be σ2

p, but
the variance of measurements on a single location of
each unit is σ2

p + σ2
loc. Consequently, their estimator

S2
repeat has expected value σ2

loc + σ2 instead of σ2.

Experimental Designs for Destructive
Gauge R&R Studies

Gauge R&R Study Under Assumptions
(c) and (d)

The standard gauge R&R study has the experi-
menter collect measurements following a crossed de-
sign: each of I objects is measured K times by each
of J operators. The kth measurement by operator j
on object i is denoted yijk, i = 1, . . . , I, j = 1, . . . , J
and k = 1, . . . ,K. Assuming (c) and (d), these mea-
surements are typically modeled as

yijk = µ+ αi + βj + (αβ)ij + εijk,

with αi ∼ N (0, σ2
P ) the random object effects,

βj ∼ N (0, σ2
O) the random operator effects, (αβ)ij

∼ N (0, σ2
PO) the object-operator interaction, and

εijk ∼ N (0, σ2
e) the error. The data can be ana-

lyzed using the ANOVA method (see Table 1, which
uses standard ANOVA notation; see Montgomery
(1997)). Taking appropriate linear combinations of
mean squares, the experimenter finds estimates of
σ2

O , σ2
PO and σ2

e . Total measurement spread is esti-
mated as

√
σ̂2

O + σ̂2
PO + σ̂2

e .

In case (c) or (d) do not hold perfectly (objects
are either not perfectly stable or slightly affected by
the measurements), some of the variance components
are overestimated. Assuming that the measurements
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TABLE 1. ANOVA Table

Source df Sum of Squares Expected mean square

Objects I − 1 JK
∑

i(ȳi·· − ȳ···)2 σ2
e +Kσ2

PO + JKσ2
P

Operator J − 1 IK
∑

j(ȳ·j· − ȳ···)2 σ2
e +Kσ2

PO + IKσ2
O

Object × 0perator (I − 1)(J − 1) K
∑

i,j(ȳij· − ȳi·· − ȳ·j· + ȳ···)2 σ2
e +Kσ2

PO

Error IJ(K − 1)
∑

i,j,k(yijk − ȳij·)2 σ2
e

{yijk}jk are done in random order, only σ̂2
e is af-

fected.

Gauge R&R Study Under Assumptions
(e) or (f)

A similar design could be used, but with repet-
itive measurements on single objects replaced with
measurements on different objects. The experimenter
selects I samples of JK objects each, which are as-
sumed to be homogeneous with respect to the mea-
surement under study. Each of J operators measures
K of these objects once. The data are modeled as

yijk = µ+ αi + βj + (αβ)ij + εijk,

with αi ∼ N (0, σ2
P ) the random sample effects,

βj ∼ N (0, σ2
O) the random operator effects, (αβ)ij ∼

N (0, σ2
PO) the sample-operator interaction, and

εijk ∼ N (0, σ2
e) the error. The effect of the JK

objects of a sample is nested within the operators
factor, which might explain why many Six Sigma
courses refer to this design as being nested. The name
is somewhat deceptive because the samples factor is
still crossed with the operators factor, whereas the
objects factor—though it is indeed nested—does not
show up in the model.

The ANOVA analysis is similar to the one in Ta-
ble 1, but Objects should be replaced with Samples.
Again, the experimenter can estimate σ2

O, σ2
PO, and

σ2
e . If (e) or (f) holds only by approximation, σ2

e will
be overestimated (assuming that the experimenter
has appropriately randomized the order of the mea-
surements).

Gauge R&R Study Under Assumption (g)

The experimenter could use historical estimates
for the pattern f . This option applies when the pat-
tern is constant in time. In example II, for example,
it could be the case that there are known and fixed
differences in the strengths of biscuits that are taken

from different positions of the oven belt. In I time in-
stants, the experimenter can select JK biscuits from
different positions. Each of J operators measures K
of these biscuits. The measurements are modeled as

yijk − γjk = µ+ αi + βj + (αβ)ij + εijk,

where γjk is the assumedly known difference in
strength (compared with the overall mean) of bis-
cuits from position j, k. As before, βj ∼ N (0, σ2

O)
and εijk ∼ N (0, σ2

e). Instead of object effects, we
now have the sample effects, αi ∼ N (0, σ2

P ), and
the operator-sample interaction effects, (αβ)ij ∼
N (0, σ2

PO). Using the mean squares from the anal-
ysis in Table 1, the experimenter can estimate σ2

O,
σ2

PO and σ2
e , and thus the total measurement spread√

σ2
O + σ2

PO + σ2
e . Within-sample variation among

biscuits that is not accounted for by the γjk is con-
founded with σ2

e .

The other option is to estimate the pattern f from
the same data that are used to estimate measurement
variability. Depending on the pattern that is consid-
ered, the design should be tailored. We provide two
examples.

Suppose that we can take objects from different
positions and that we assume that there are fixed
differences among these positions. A possible exper-
imental design for I = 6 samples and for J = 6
operators is found in Table 2. The design is based on
the 6 × 6 Latin-square design. Each sample consists
of objects taken from positions k = 1, 2, . . . 6.

The measurement of an object from position k and
in sample i by operator j is denoted yijk (note that,
given i and j, k is completely determined by Table
2). We consider the following model:

yijk = µ+ αi + βj + γk + εijk. (5)

The sample and operator effects αi and βj are consid-
ered random. The fixed differences among positions
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TABLE 2. Latin-Square Design

(entries indicate positions k ∈ {1, . . . , 6})

Operator

Sample 1 2 3 4 5 6

1 1 4 3 5 2 6
2 2 1 5 3 6 4
3 3 5 4 6 1 2
4 4 3 6 2 5 1
5 6 2 1 4 3 5
6 5 6 2 1 4 3

k = 1, 2, . . . , 6 are modeled in the γk. The ANOVA
analysis follows the template of Table 3. Models for
this type of design are always additive (i.e., do not
contain interaction terms; see Montgomery (1997,
Section 5-2)). As a consequence, this approach is only
suitable if it can be assumed that there is no interac-
tion effect for samples and operators. More advanced
designs allow inclusion of an interaction term, but
the complexity of the corresponding analyses brings
these beyond the scope of this article. Taking linear
combinations of mean squares, Table 3 allows esti-
mation of σ2

O and σ2
e .

As a second example, we study example II
(strength of biscuits). We assume that the strength
of consecutive biscuits increases or decreases linearly,
at least when we consider just a brief period. We
hope that this pattern explains a major part of the
variation in strength between successive biscuits. For
simplicity of the example, we only estimate the total
measurement spread, σ, here, but we shall indicate
how to extend the approach to enable estimation of
the measurement spread components, σ2

O, σ2
OP , and

σ2
e .

The experimenter selects I = 6 samples of J = 6
consecutive biscuits each (see Table 4). The data are
modeled using the ANCOVA model:

yij = µ+ αi + βi(j − (J + 1)/2) + εij .

TABLE 4. Strength of Biscuits

Serial Number

Sample 1 2 3 4 5 6

1 11.0 11.0 11.1 11.2 11.1 11.4
2 9.4 9.5 9.6 9.6 9.9 10.4
3 8.5 8.8 9.1 9.3 9.9 9.4
4 10.3 10.1 10.0 10.4 10.6 10.5
5 9.7 9.7 9.7 9.8 10.3 10.0
6 9.0 9.1 9.5 9.6 9.5 9.9

The αi denote the sample effects. The slope of the
linear trend within a sample i is represented by βi.
The variance σ2 of the εij now represents total mea-
surement variation. Standard analysis of covariance
(Montgomery (1997, Section 4-7) and Horton (1978))
results in the ANCOVA table (Table 5).

We use the error mean square to estimate mea-
surement spread. It is calculated in ANCOVA models
as

MSerror

=

I∑
i=1

J∑
j=1

(yij − ȳi·)2 −
I∑

i=1

β̂2
i

J∑
j=1

(
j − J + 1

2

)2

I(n− 1)− J ,

with

β̂i =

J∑
j=1

(
j − J + 1

2

)
(yij − ȳi·)

J∑
j=1

(
j − J + 1

2

)2
.

Measurement error is estimated as σ =
√

0.0326 =
0.18, which is a pessimistic estimate becauseMSerror

confounds measurement error and biscuit-to-biscuit
variation that is not explained by the linear trend.
Had we not attributed a major part of the within-

TABLE 3. ANOVA Table for Latin-Square Design. Note that I = J = K = p

Samples p− 1 p
∑

i(ȳi·· − ȳ···)2 σ2
e + pσ2

P

Operator p− 1 p
∑

j(ȳ·j· − ȳ···)2 σ2
e + pσ2

O

Position p− 1 p
∑

k(ȳ··k − ȳ···)2 σ2
e + [p/(p− 1)]

∑
k γ

2
k

Error (p− 2)(p− 1)
∑

i,j,k(yijk − ȳi·· − ȳ·j· − ȳ··k + 2ȳ···)2 σ2
e
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TABLE 5. ANCOVA Table

Source df Adj SS Adj MS F P

Trend 1 1.9612 1.9612 60.08 0.000
Sample 5 4.6887 0.9377 28.73 0.000
Sample × trend 5 0.3504 0.0701 2.15 0.094
Error 24 0.7834 0.0326

sample variation to the linear trends, the model
would have reduced to a one-factor ANOVA. Esti-
mating measurement error as the square root of the
error mean square, we would have obtained σ = 0.32.

This approach can be extended to incorporate op-
erator and operator × sample interaction effects in
the analysis. Assuming a number ofK = 3 operators,
the experimenter randomly assigns two biscuits out
of each sample to each operator. The model becomes

yijk = µ+αi +γk +(αγ)ik +βi(j− (J +1)/2)+ εijk.

The γk and (αγ)ik are the operator and operator ×
sample interaction effects. The terms in the model
can be estimated following an ANCOVA approach;

suitable combinations of mean squares allow estima-
tion of σ2

O, σ
2
PO, and σ2

e . This analysis is not straight-
forward, however, and for that reason is beyond the
scope of this article.

Conclusion

In order to estimate measurement spread, an ex-
perimenter needs multiple measurements of a single
object. In many situations, this can be done by mak-
ing the assumptions that objects are invariable in
time and that measuring does not affect them. When
these assumptions do not hold, as is the case with
destructive measurements, measurement variation is
confounded with other sources of variation. The ex-
perimenter can obtain a good estimate of measure-
ment spread if he can exploit certain forms of ho-
mogeneity. In the article, various examples of such
homogeneity assumptions were introduced (assump-
tions (c) through (k); see Table 6). They are based on
the idea that either the effects of disturbing sources
of variation are negligible or that the results can be
corrected for their influence.

Given that the homogeneity assumptions that the
experimenter makes will only be met to a certain ex-
tent, the confounding problem is not solved entirely.

TABLE 6. Overview of Approaches and Assumptions Developed in This Article

Standard Assumptions

a Constancy of bias
b Homogeneity of measurement error
c Temporal stability of objects
d Robustness against measurement

Approaches for Destructive Measurements Additional Assumptions

e Homogeneity of objects a,b,c
Within small samples, object-to-object variation is negligible

f Representativeness of alternative objects a,b,c,e
There are alternative objects for which object-to-object variation is negligible

g Patterned object variation a,b,c
The object-to-object variation can be modeled and thus corrected for

h Alternative, nondestructive measurement system a,b,c
There is an alternative measurement system that is nondestructive

i Alternative perfect, destructive measurement system a,b,c
There is an alternative measurement system that is destructive but has
virtually no measurement spread

j Patterned temporal variation a,b
The temporal variation can be modeled and thus corrected for

k Known true values a,b,f
There are reference objects with known true values
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As a consequence, measurement spread will be over-
estimated. The better the experimenter succeeds in
arranging his gauge R&R experiment such that con-
ditions are homogeneous, the smaller this overesti-
mation is.

Although suggested sometimes otherwise in liter-
ature (and in spite of expectations that practitioners
often have), there is not a statistical trick that solves
the confounding problem when no homogeneity as-
sumptions can be justified: there is a strain between
destructive measurements and the basic principles of
gauge R&R studies.
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