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ABSTRACT

Apart from their uses in the context of statistical process control, control charts
are also used as an exploratory tool in the context of exploratory data analysis.
These two application situations are not similar and, as a consequence, control
charting methodology should be adjusted to the exploratory context. In this
article we make an inventory of the requirements for control charts that are used
for exploratory analysis and we propose a procedure that meets these
requirements. Robustness against assignable causes of variation appears to be
important. The proposed methodology is illustrated from two real-life examples.
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INTRODUCTION

Control charts are applied for a number of
purposes and in a range of contexts. Their original
application is as part of a control loop, for instance,
in the form of Shewhart’s continuing and self-
correcting operation to bring a process into a state
of statistical control (Shewhart, 1939, p. 25). In this
application, measurements from the running process
are added one by one to the chart. The chart’s
purpose is to instigate and guide the search for

Change-point
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assignable causes of variation. A slightly different
situation arises once the process is more or less in
statistical control and the control chart is used to
monitor the process. Literature on control charts
(Woodall and Montgomery, 1999) focuses predomi-
nantly on the control chart in this context.
Consequently, the current charting methodology
has developed charts that function well in the context
of monitoring, but this does not necessarily make
them perform well as a technique in other applica-
tions. A different application of control charts is their
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use to judge from a given data set whether the process
that produced the data is in statistical control. This
type of application is called retrospective analysis
(Woodall and Montgomery, 1999).

In this article we study the use of control charts
for exploratory analysis. This type of analysis is
performed on a given data set (such as in retro-
spective analysis but unlike monitoring) and has as its
purpose the detection of assignable causes of varia-
tion, i.e., assist an inquirer who seeks to discover
sources of variation in a process by revealing evidence
of the variation sources. This purpose is identical to
the function of control charting in the monitoring
context but deviates from its application in retro-
spective analysis, where the (primary) purpose is not
the detection of assignable causes (which is an
analysis of individual observations) but the inference
whether or not the process is in statistical control
(which is an inference about the complete data
sample). Control charts are used in this manner in
exploratory studies (Hoaglin et al., 1983) as well as an
after-the-trial check in the analysis of experimental
data to check for evidence of assignable causes. It
is the purpose of this article to develop a control-
charting procedure that meets the needs of explora-
tory analysis.

We limit ourselves to control charts for data that
are collected as individual measurements, leaving
situations in which data are collected in subgroups
for further research. Furthermore, we consider
situations in which the data can be described reason-
ably adequately by means of the normal distribution,
although the methodology is robustified against
deviations from the normal distribution, especially
in the tails. Finally, we assume that the data are
independent. The control chart is designed with
moderate sample sizes (say, 20 to 100 data points)
in mind.

The article is organized as follows. First we
investigate the differences between the exploratory
context and the monitoring context. Two motivating
examples are discussed, highlighting the problems
that are encountered if an inquirer applies control
charts for exploratory analysis. The fourth section
enumerates the requirements for a control chart in
the exploratory context and incorporates these in a
control-charting procedure. The statistical technical-
ities are developed in the fifth section. Two real-life
examples demonstrate the proposed procedure’s
effectiveness in comparison with alternative con-
trol-charting methods. A discussion concludes the
article.
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THE EXPLORATORY VS. THE
MONITORING CONTEXT

To illustrate the importance of studying control-
charting procedures for exploratory analysis apart
from the monitoring context, we consider differences
between the two situations. These differences bear
upon:

1. Continuing time series vs. finite sample. In the
monitoring situation, samples are collected one by
one. Each newly collected data point is compared to
the control limits to verify whether the process is still
in statistical control. The probability o of a false
signal is associated with a tail area under the
distribution of the individual measurements. If the
normal distribution is taken as an approximation of
this distribution, the control limits are usually set at a
distance of 3o of the central line, which corresponds
with an approximate false alarm probability of
0.0027 per observation.

In the exploratory case, the inquirer deals with a
finite sample. Consequently, he could consider basing
the control limits on an overall false alarm prob-
ability. The approximate false alarm probability « is
then based on the joint distribution of all the data in
the sample. Woodall and Montgomery (1999) advo-
cate this procedure in the context of retrospective
analysis, and it seems appropriate when the chart
ought to provide answers relating to the complete
data set (such as, Was the process controlled?). We
shall argue that it is inappropriate in the exploratory
context.

2. State of the process. Monitoring is especially
useful if the process has first been brought in a more
or less controlled state. In the exploratory situation,
however, there is no reason to assume that the
process is in control, hence it is very possible to
encounter a chaotic sample of measurements. It is,
therefore, important to protect oneself by making the
control chart robust against deviations from the
assumptions that underlie the method. In line with
exploratory data analysis theory in general, robust
methods ought to play a dominant role (Hoaglin
et al., 1983).

3. Dependence between test statistics and control
limits. The control limits for a chart that is used for
monitoring are computed from an initial sample or
from historical data. Hence, the measurements that
are collected from the production process are
stochastically independent of the control limits. In
the exploratory situation this is not the case: control
limits are computed from the measurements that are
plotted in the chart. As a consequence, disturbances
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Figure 1. Control chart with control limits based on the average moving range.

in the observations can inflate the control limits,
making the chart less sensitive in detecting the
remaining assignable causes. This is a second
motivation to use robust statistical procedures.

4. Dependence between successive tests. If the
control limits are computed from the measurements
that are indicated in the chart, the successive
comparisons of observations to the control limits
are no longer independent, as was observed by
Quesenberry (1993). Consequently, the fraction of
points that are mistakenly identified as outliers is no
longer «. Quesenberry shows that the dependence
between the successive tests is related to the variance
of the control limits. This is a motivation to base the
control limits on efficient estimators.

S. Difference in functionality. In monitoring, the
emphasis is on the signal function of the control
chart, whereas the emphasis in exploratory analysis is
on clue generation. For this reason, the requirement
that the chart provides an easily interpreted display
of the data is even more important in the exploratory
context than in the monitoring context.

TWO MOTIVATING EXAMPLES

Two examples demonstrate some of the problems
that could arise when control charts are applied in
exploratory analysis.

The data in Fig. 1 were drawn from the A(0, 1)
distribution. Observations 11 and 20 were replaced
with the value 6.0, observation 14 with the value
—6.0. Given the way in which the data were obtained,
one would like a control chart to give three signals: at
observations 11, 14, and 20. The chart that is often

used for exploratory analysis is the individuals
control chart (Roes et al.,, 1993). In this control
chart—referred to as the average moving range
(AMR) chart—the control limits are computed from:

UCL = /i +2.66 AMR

LCL = 4 —2.66 AMR O
Here, [ is the overall mean of the data and:
| =l
AMR == b= il &)

The outliers in the data result in an inflated error
estimate; consequently, the control limits are too
wide: the chart in Fig. 1 gives one signal (observation
14)—and even this point is only just below the lower
control limit.

The data in Fig. 2 were obtained from a
simulation of the model:

Yi= Wit € 3)

with ;=100 for i=1,...,20; wu;=12.0 for
i=21,...,30; and u;=28.0 for i=31,...,50. The ¢;
are i.i.d. A(0, 1). Observation 47 was set to the value
12.5. We would like a control chart to make the
following suggestions:

e Shift in the mean at i=21 and i=31.
e Outlier at i=47.
e The remaining variation is white noise.

The AMR chart gives one signal. It does not give
any information about the moment when the shifts
occurred, and the shifts make the detection of further
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Figure 2. Control chart with control limits based on the average moving range.

assignable causes—such as the outlier at i=47—
difficult.

PROPOSED CONTROL CHART
Requirements

In order to identify requirements for a control
chart for exploratory analysis, we study the require-
ments listed by Shewhart (Shewhart, 1939, p. 30) for
control charts:

1. They should indicate the presence of assign-
able causes of variation.

2. They should not only indicate the presence of
assignable causes but also should do this in a
way to facilitate the discovery of these
causes.

3. They should be as simple as possible and
adaptable in a continuing and self-corrective
operation of control.

4. They should be such that the chance of
looking for assignable causes when they are
not present does not exceed some prescribed
value.

We discuss these requirements for the control
chart in the exploratory context.
Ad 1. Indicate the Presence of Assignable Causes

Assignable causes are detected by anything that
indicates nonrandomness. An obvious deviation from

randomness is an outlier. Other criteria should be
based on the order of data, in which generic patterns
could be observed by which assignable causes
manifest themselves. We propose to discern, apart
from outliers, one generic pattern that the control
chart should detect, namely shifts in the mean. The
importance of this pattern is acknowledged by the
extensive literature on CUSUM and EWMA charts.
The discussion about the inclusion of more generic
patterns is presented in the last section of this article.

As demonstrated in the examples in the previous
section, the presence of assignable causes of either
kind, outliers or shifts in the mean, seriously affects
the chart’s ability to detect the remaining assignable
causes. Therefore, and in view of points 2 and 3 in
section 2, the procedure should be robust against
both outliers and shifts in the mean. The former is
achieved by employing robust estimation methods,
the latter by incorporating detected shifts in the
analysis. Finally, a clear visualization is vital in the
exploratory context to facilitate the revelation of
more nonrandom patterns, as noted in point 5 in
section 2.

Ad 2. Facilitate the Discovery of Detected
Assignable Causes

In exploratory analysis, this is an important
point and it is the reason why the chart should not
use an overall false alarm probability «. The inquirer
is interested in questions such as, when were assign-
able causes present? and how many assignable causes
were present?, which are questions related to indivi-
dual measurements. Hence, the chart’s performance
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should be based on the distribution of the individual
data points and individual os, such as in the
monitoring context, are appropriate.

Ad 3. Simple and Adaptable

The computations required for the set-up of a
control chart are nowadays always performed by a
computer, and as a consequence, the restrictions on
computational efforts are much looser than in
Shewhart’s days. We do not, therefore, consider
simplicity or adaptability of computation an impor-
tant requirement. Simplicity of the visual presenta-
tion, on the contrary, is important.

Ad 4. Low False-Alarm Rate

Shewhart warns against confusing criteria for the
identification of assignable causes and hypothesis
tests. This relates to the issue that as long as the
process is not in statistical control, the assumptions
that are required for a hypothesis test (e.g., concern-
ing the assumed distribution) cannot be made
rigorously. The mathematical theory of hypothesis
testing serves as a background for the development
of control-chart procedures, yet it is fundamentally
different (Shewhart, 1939, pp. 39-40). In particular,
the chance of looking for an assignable cause
when there is none present is associated with the
tail probability of an assumed distribution function,
but this association should be seen as a rough
approximation.

Various authors have argued against plotting
control limits in a control chart when it is used in the
context of exploratory data analysis. In reply to
Woodall (2000), Hoerl says that ““the plot of the data
over time is much more valuable than the control
limits.” However, Shewhart’s requirement 4 suggests

5 10 15 20 25
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that the purpose of the control chart is not only to
specify when to search for assignable causes but also
when not to do this. In our experience, engineers find
it difficult to assess which patterns typically arise in
random noise and which are indicative for assignable
causes. The control limits give the guidance that these
engineers need. This does not mean that the
comparison of observations to control limits should
be seen as a hypothesis test (Woodall, 2000). It only
means that our chart should indicate which points are
suspicious and which are not and that our opera-
tional definition of ‘suspicious’ is based on tail areas
of distribution functions.

Proposed Procedure

For the analysis of individual measurements in
the exploratory context, we propose the subsequent
control-charting procedure.

1. Estimate the locations of possible shifts
and test significance of these shifts. Upon
completion of this step, the original data
set is divided into intervals on which the
mean of the measurements is presumed
constant.

2. Estimate (using robust estimators) the means
of the intervals between successive shifts.
Also, estimate (using robust estimators) the
variance of the in-control measurements.

3. Based on these estimates, determine a pair of
control limits for each interval. Measure-
ments are identified as outliers if they fall
beyond these control limits.

A preview of the effectiveness of this procedure
in dealing with the problems illustrated in section 3 is
shown in Fig. 3.
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Figure 3. Proposed control chart.
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Relationship with Propositions
in Literature

Hawkins (1993) distinguishes isolated assignable
causes from persistent assignable causes and links
these to the Shewhart-type control chart for the first
type and charts that accumulate information from
successive measurements (CUSUM, EWMA) for the
second. The proposed control chart is a combination
of both types of techniques: it employs change-point
analysis techniques to detect shifts and Shewhart-type
control charts for the intervals between shifts. This
combination has been proposed in the literature
(Lucas, 1982; Sullivan and Woodall, 1996) but not in
a form that has the two analyses incorporated in a
single graph. There is a lot of literature on the
application of change-point analysis in control-
charting methodology, such as literature on
CUSUM techniques (Page, 1954) and Cuscore
charts (Box and Ramirez, 1992). Especially in the
context of retrospective analysis, a powerful method
is proposed by Koning and Does (2000). However,
these articles focus on detection of shifts and do not
address the issue of estimating their location. Sullivan
and Woodall (1996) do consider estimation of the
location of a shift. Their procedure is less powerful in
detecting shifts than the procedure of Koning and
Does, but the gain in power of the latter is
appearance, since the extra detected shifts are so
small that they cannot be estimated accurately.

The role that robust estimation ought to play in
control-charting methodology was well stated by
Rocke (1989), who observed that:

e statistics that are indicated in the control
chart should be sensitive to outliers, whereas

e statistics that are used to calculate the control
limits should be robust against outliers.

In past decades, a number of articles has
appeared that deal with robust control charts. A
robust mean and range chart was proposed by
Langenberg and Iglewicz (1986), who base their
control limits on the trimmed mean of the subgroup
means and the trimmed mean of ranges. Rocke
(1989) studied the use of the inter quartile range
(IQR) as a robust estimator of error and found it to
perform well in a number of out-of-control scenarios.
More advanced estimators for the mean and range
chart where studied by Tatum (1997). He recom-
mended the use of a variant of the biweight
A-estimator (Lax, 1985). This estimator is very robust
against deviations from the model assumptions but

REPRINTS
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has nonetheless an efficiency that is only slightly less
than that of the sample standard deviation.

Robust methods for the individuals chart
were studied by Bryce et al. (1997) and Boyles
(1997). The median absolute deviation (MAD) from
the median seems to outperform other estimators in
situations in which outliers are present. However,
neither of the two articles draws the biweight
A-estimator or other advanced robust estimators
into the comparison.

In the following section we derive the necessary
estimation and testing procedures. In order to satisfy
the robustness requirement, the theory of M-estima-
tors plays an important role. The reader is referred to
Hoaglin et al. (1983) for a concise introduction.

ESTIMATION AND
TESTING PROCEDURES
Estimation of the Location of a Shift
Suppose that an inquirer has collected a sample of

nmeasurements that are to be analyzed using a control
chart. The null model that is assumed for the in-

control process has all measurements y;, i=1,...,n,
share the same normal distribution:
vi=u+e, i=1,...,n, 4)

with ¢; 1.i.d. (0, o?).

To derive the required estimation and testing
methods, we start studying how to estimate the
location 7 of a shift, given that a single shift has
occurred. The situation is described by the following
model:

{yi:l,l,]—i-éi for i:1,...,T

vi=mur+e€ for i=t+1,...,n ©)

€ iid. N(0,0%); w1, o, o, and t are unknown.
Sullivan and Woodall (1996) derive the maximum
likelihood (ML) estimator for . It is found, together
with the ML estimators for u, u,, and o, from:

(ﬂ’l 5 [LZa &9 :E) = arg min Z(/J“la 2,0, t) (6)
W1, 12,0, T

1
with

n 2

Ui, 2,0, 7) = S log(2ma”)

1 T
t5,2 <Z(J’i — 1)

i=1

£ 30 - 0

MaRrcEL DEkkER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 5

Copyright © Marcel Dekker, Inc. All rights reserved.



ORDER |

Robust Individuals Control Chart

Arg min f(x) denotes the value of x for which f(x) is
minimized. Taking derivatives for u;, u,, and o and
equating to zero, we find for fixed t:

- I¢
7] =;ZJ’1‘
i=l

. 1 n
aolt] i Z Vi

i=t+1
1 T n
#hk7<§}w—ﬂdm?+§jcw—th)(&
i=1 i=t+1

t=2,3,...,n—2. Next,

T=arg min {([], a2f7],6[7], 7)

2<t<n-2
= arg min{log(o{z])} )
Finally,
pr = [Tl o = poft]; 6 = o7] (10)

However, we are well aware that not all
measurements are necessarily produced by the
in-control model Eq. (5). We anticipate that some
observations—outliers—might stem from a more
heavily tailed distribution. In order to make the
procedure robust against the possible presence
of outliers, it is modified in the following way.
For t=2,...,n—2, let f[r] be the solution of
>t (i — p)/esolt) =0 and let fio[7] be the
solution of Y7 ., ¥((yi — pna)/csolr]) = 0, where:

solr] = median{ly; —ml|}i_y (11)

with m=my[tr] if 1<i<t, and m=myr] if
T+ 1 <i<n, where m[t] and my,[7] are the medians
of  yi,...,y. and  y.i,...,y, respectively.
Furthermore, ¥ is an odd function, whereas c¢ is
a tuning constant. Thus, f[tr] and f[t] are
M-estimators for location based on a preliminary
estimate so[r] for scale. Our final scale estimate is
given by:

ol7]

ﬁm[ﬂ(Z,ﬂ v (v — fule))/esoll)

12
+Zgﬂw%ﬁ—mvamQ

= (12)
‘ Y V(i = alrh/esolzl)

+ e W (i — Aalz])/esolT])
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Y’ denoting the derivative of . The given procedure
to obtain a scale estimate uses the asymptotic
variance of the M-estimators for location in order
to estimate the standard deviation of the error. This
type of scale estimator is named A-estimators by Lax
(1985). Lax finds A-estimators to perform well when
compared to other robust scale estimators, including
M-estimators. See also Hoaglin et al. (1983), Gross
(1976), and Shoemaker (1984).

We propose to take for ¢ the derivative of the
bisquare function:

u(l =2, Jul <1,

1
0, lu] > 1. (13)

Y(u) = {

Although this choice can be well motivated, we
mention Huber’s, Hampel’s and Andrews’ ¢ func-
tions as alternative options (Hoaglin et al., 1983).
Observations yy,...,y, in the neighborhood of the
estimated mean f[[r] have standardized values
u = (y; — fi1[z])/cso[t] around 0, as do observations
VYeils---»Vn in the neighborhood of fiy[t]. For these
observations, ¥(u) behaves as ku (for a nonzero
constant k), which is the y-function associated with
the ML estimator for normally distributed measure-
ments. In view of the assumed normality of the center
of the distribution, this is an important property
(Hoaglin et al., 1983, p. 363). Observations further
removed from the mean are more and more down-
weighted, and observations further removed than
¢solt] are completely rejected. Simulations show that
the value ¢=9 for the tuning constant results in a
good performance in a range of situations.

Analogous to Eq. (9), T could be determined
from:

7 = argmin{log(s[z])} (14)

but because of the chosen ¥ function, evidence of
(larger) shifts is mistakenly downweighted (or
rejected) as stemming from outliers. Therefore, a
better estimate for 7 is found from:

£ = arg min{log(6"[])} (15)

where 6#[7] is found by substituting ¥ for ¥ in Eq.
(12). Function v is a stretched version of ¥ so as to
reflect the fact that we have data from two normal
distributions (with mean p; and mean u,). Figure 4
illustrates the idea. Letting A = |{1[t] — fa[t]l/csolz],
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Figure 4.

we define:
¥ (w)

u(l =1y, Jul < =,

sgn(u) 33%. F<lul <A+,
=1 sen()(jul — A) (16)

x(I=(ul = APP,  A+f<lul<A+1,
0, lu|>A+1.

We use ¥ only in Eq. (15); all other estimators are
based on ¥. As in Eq. (10), &, = i[7]; i = f2[7];

A A

o =ol1].

Testing Significance of a Shift

We test the null-model Eq. (4) against the
alternative model Eq. (5). The likelihood ratio
statistic for this testing problem is (67/6%)"/?, with
né3 = Y (vi — fio)* and njig = Y, y;. This statis-
tic can be shown to be equivalent with:

n (o2

with 6% = né?/(n —2). This statistic has the same
appearance as the test statistic in the two sample
t-test, but because of the fact that 7 is a random
variable, it does not follow a ¢-distribution under the
null model.

The test statistic defined in Eq. (17) can be
robustified by plugging in the robust estimators
proposed in the preceding section. Thus, we arrive at:

n o

Simulations show that the distribution of RT?/n,
under the null model can be well approximated by an
F-distribution having n; degrees of freedom in the
numerator and n, degrees of freedom in the
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¥ (left) and ¢* (right). The locations of =0 and u== A are marked with 0 and D or — D.

Table 1. Suitable values for n;
and n, for various sample sizes 7.

n np ns
5 2.09 1.15
8 2.57 1.95
10 2.98 3.00
15 3.26 5.70
20 3.50 10.90
30 3.76 29.60
40 3.97 55.30
50 4.13 90.60
60 4.23 )
70 4.33 %)
100 4.42 00
150 4.56 )

denominator. For various n, suitable choices for n;
and n, are given in Table 1. The appendix provides
details about the determination of these values.

The proposed approximation is accurate up to
the 0.99 quantile of the distribution of R7?/n;. An
accurate approximation to the values for n; and n,
can be found from the following formulas:

ny ~4.58 —22.4/n+ 52.2/n*
ny ~2.41 — 0.424n + 0.0438n°
(For n > 50, take n, = 00.) (19)

Altogether, the test signals if (1/n))RT* > F," x
(1 — ), with o the probability of falsely detecting a
shift. Table 2 illustrates the performance of the
procedure. For shifts of various magnitudes (in
multiples of o) and for various sample sizes n, the
table gives the percentage of detected shifts for shifts
that occur on one fourth of the data series and

halfway the data series.
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Table 2. Percentage of detected shifts depending on magnitude of the shift, sample size, and location of the shift.

Sample size n and location of shift ¢

415

10 20 40 80

Shift

(multiples of o) 3 5 5 10 10 20 20 40

1 6.0% 63%  21.9%  29.3% 47.0% 61.8% 83.4% 93.4%
15 10.5%  102%  493%  62.4% 84.8% 95.5% 99.7%  100.0%
2 144%  19.6%  745%  88.7% 98.3% 99.8%  100.0%  100.0%
25 234%  28.7%  90.9%  982%  100.0%  100.0%  100.0%  100.0%
3 30.6%  38.9%  982%  99.8%  100.0%  100.0%  100.0%  100.0%

Multiple Shifts

Having detected a shift, the data are split into
two groups: yi,...,y; and y;.q,...,y,. The same
procedure is applied to both groups, verifying
whether more shifts can be detected. This procedure
is continued recursively until no more shifts are
detected or until the size of the groups becomes
smaller than 4 or any other chosen minimum value.
In the situation of a larger number of alternating
shifts, this procedure suffers from a masking pro-
blem. Since the control chart is designed with
moderate sample sizes in mind, the number of shifts
will not often be that large and, as a consequence, the
adequacy of the proposed control chart is not
seriously affected. However, the construction of a
procedure that deals more effectively with multiple
shifts is an interesting topic for further research.

Detection of Outliers

Denoting by fig,...,M4; the estimated means of

the groups in between the detected shifts 75, ... ,7, we
re-estimate the error from the formula:
o
n(CSO)( YAy — )/ eso) 4 -
12
F L V= /)
= - (20)
vin— k‘ YV (i — ) /eso) + -
+ e V(i — )/ eso)
As before, sq is the MAD:
so = median{y; — m} (21)

with m the median of the relevant subgroup. The
factor /n in the numerator of Eq. (12) is replaced
with /n?/(n — k) in order to account for the loss of
degrees of freedom for the estimation of wy,...,u.
Note that 6 is calculated from v instead of y"; this
ensures that our final scale estimate is robust against
nuisance stemming from slight misestimation of t.

For each group j=1,...,k, the chart has control
limits at;

UCL; =+ h

LCL; = fi; —h (22)

where we define 7 =0 and 7., = n for notational
ease. The scalar & determines how much evidence
we require before we are prepared to identify
an observation as an outlier. We work with
the  traditional value Ah=3. The factor
V@1 — 7 — 1)/(Tj41 — ;) stems from the depen-
dency between the y; and the control limits.

TWO EXAMPLES

In two examples stemming from recent projects,
we compare the method with other control charts.
The first example stems from the food industry. The
principal stage in the production of decaffeinated
coffee is an extraction process during which most of
the caffeine is removed from the coffee beans. During
the extraction, an auxiliary substance DCM is added
to the beans and removed after the process. The
percentage of DCM that is absorbed by the beans
and as a result cannot be removed is an important
quality characteristic.
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Figure 5. Proposed control chart for

A quality improvement project was started in
order to bring the DCM percentages safely below a
certain requirement. In an early stage in the project,
DCM percentage measurements were collected from
96 batches of coffee beans. The robust exploratory
control chart of these data, which are multiplied by a
scalar for reasons of confidentiality, is presented in
Fig. 5.

The control chart reveals the presence of several
assignable causes: it provides evidence that in the
time period in which the 96 measurements were
collected eight isolated disturbances occurred as well
as two shifts in the mean. Removing the outliers and
correcting the remaining measurements for the shifts,
the inquirer is left with measurements that can be
described reasonably well by a normal distribution
with standard deviation 0.35. Note that the identifi-
cation of outliers is possible because the risk of a false
signal is specified per observation (cf. section 4.1, ad.
2). Had we chosen to work with an overall false alarm
risk, it would have been unclear what guidance the
control limits provide for the identification of
assignable causes.

The unstable state of this process is a serious
complication for experimentation. In the first
instance, improvement efforts should focus on pre-
ventive actions against the disturbances. The control
chart in the figure gives important indications of their
nature and the time instants on which they occurred.
A good strategy would be to discuss the control chart
with the operators and process engineers who work
with the process and, if possible, to consult log books
in order to find more information about the process
conditions during those time when disturbances
occurred.

60 80

DCM percentage measurements.

Figure 6 shows the AMR chart for the DCM
percentage measurements. This chart detects the
larger outliers. It does not, however, provide indica-
tions about the presence of the shifts. Moreover, two
of the smaller outliers are not detected. The standard
deviation of the in-control process is estimated to be
0.58, which seems too large. This large estimate can
be explained by the fact that it includes the additional
variation that is caused by the shifts and by the fact
that the average moving range is not as robust an
estimator as the A-estimator that was used in the
proposed procedure.

The AMR chart can be augmented with addi-
tional runs rules (Nelson, 1984). These extra tests
make the chart more powerful in detecting shifts and
drifts. We apply two popular rules to the DCM
percentage data:

1. Signal when nine consecutive measurements
are on the same side of the center line.

2. Signal when four out of five measurements
are on the same side of and more than a
distance of 1 sigma from the center line.

The first rule signals at observations 9, 10, 11, 12,
13, 60, 61, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96. The second rule signals at
observations 4, 5, 6, 7, 8, 10, 11, 12, 13, 56, 57, 58, 60,
89, 90, 91. Clearly, the chart finds evidence for the
shifts. However, it does not provide clear information
about their number or the time instants on which
they occur. Moreover, the detected shifts are not
incorporated in the analysis, and, as a consequence,
the chart is less sensitive in detecting the remaining
assignable causes. Also CUSUM and EWMA charts
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Figure 6. AMR chart for DCM percentage measurements.

(with sensibly chosen parameters) detect the shifts but
fail to show to what extent the remaining variation is
white noise.

The second example demonstrates the perfor-
mance of our procedure in the case of a smaller data
set (30 observations). The example concerns the
lengths of biscuits when they leave the oven. In
order to identify assignable causes of variation in
their length, three biscuits were measured every 2
minutes, for 60 minutes on a row. The resulting data
set does not consist of individual measurements.
However, the proposed control chart can be applied
to the averages of the groups of three measurements.
The chart for these averages is presented in Fig. 7.

The chart suggests that the average length has
shifted between minute 22 and minute 24. Inquiry
with the operators on duty revealed that the speed of
a conveyor belt was modified at (precisely) that
moment in order to adjust the length a bit. In
addition to this adjustment, the average length
appears in statistical control, indicating that no
assignable causes should be sought on the basis of
these measurements.

The traditional chart for subgrouped measure-
ments is the (X,R) control chart. The X-chart is
shown in Fig. 8. The control limits are computed
from an estimate of the within-groups spread based
on the average range (see formula 6-5 in
Montgomery (1991), p. 204). The chart gives four
signals. The X-chart signals when there is (a
significant amount of) between-groups variation
that cannot be accounted for by the within-groups
variation alone. In view of this behavior, the four
signals would suggest that the length of the biscuits is
not perfectly stable in time, which is in itself a

valuable suggestion but not specific enough to
pinpoint the assignable cause.

If the inquirer is less interested in establishing
whether additional between-groups variation is
present, but rather wants to know whether this
additional variation is random, he could plot an
AMR-chart with the average lengths considered as
individual observations (this procedure is advocated
for the monitoring context in Does et al. (1999)). The
chart is shown in Fig. 9. The chart fails to detect
the shift in the mean (even when it is augmented with
the previously mentioned runs rules). It is concluded
that the proposed control chart provides the most
revealing presentation of this data set.

DISCUSSION

The term control has little bearing on the
application of control charts in exploratory analysis.
Consequently, the terms control chart and control
limits are somewhat misleading, and process behavior
chart and natural process limits might be better terms
(this terminology is used by Wheeler and Poling,
1998).

It has been argued that charts for monitoring in
which the control limits are computed from small
samples are misleading (Quesenberry, 1993).
Simulations show that the probability that the
proposed exploratory chart gives a misleading
image is modest, even for smaller sample sizes.
Judging a chart to be misleading either if it
incorrectly detects a shift or if it gives two or more
false alarms for outliers, we find that for a sample size
of 40, the probability that the chart is misleading
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Figure 8. X-chart for the lengths of biscuits.

is 5.72%. Simulations also confirm the high efficiency
of the A-estimator: 84% for a sample size of 40
(compared to the standard deviation). The efficiency
of a scale estimator based on the AMR is 61%.

An alternative for using robust estimators for the
mean and in-control standard deviation is the
following iterative procedure:

1. Plot a provisional control chart of the data.

2. Identify outliers.

3. Recalculate the control limits, ignoring the
identified outliers.

Steps 2 and 3 could be done once or iteratively
until no more outliers are detected. It should
be understood that this procedure is nothing but
a robust estimation procedure. The statistical

properties of procedures like this, however, are only
mediocre to bad (Hampel et al., 1986, pp. 56-71).
There is, moreover, an inherent problem in the given
procedure: outliers might inflate the error estimate so
much that the chart becomes too insensitive to detect
even a single outlier (the chart in Fig. 1 comes quite
close to this situation). The given iterative procedure
is inferior to the use of the A-estimator in the
proposed control chart.

The proposed procedure could, and perhaps
should, be generalized to include more generic
patterns. Obvious candidates include linear (or
polynomial) trends, autoregressive or moving average
terms, and shifts in the variance. The selected generic
patterns should span most of the space of patterns in
which assignable causes manifest themselves. The
procedure should suggest one or a number of possible
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Figure 9. AMR-chart for the averages of lengths.

interpretations of the data and it should indicate to
what extent the given interpretations succeed in
reducing the measurements to white noise. This
procedure appears to be a valuable aid for explora-
tory data analysis. The inquirer must, however,
always look for clues that the automated procedure
does not detect. Moreover, the suggested interpreta-
tions should be interpreted as hypotheses and further
testing should be required before the inquirer can
arrive at a final interpretation of a set of data.

APPENDIX
Approximating the Distribution of RT>

For suitable choices of n; and n,, we approximate
the distribution of RT%/n; [see Eq. (18)] under model
Eq. (4) by the F, ,, distribution. This appendix shows
how suitable values for n; and n, were obtained for
various sample sizes n.

For fixed n, we draw 10,000 samples of size n
from a standard normal distribution and we calculate
the corresponding 10,000 realizations of RT”. The
first two moments of the empirical cumulative
distribution function (ECDF) that is induced by
these 10,000 values are given by:

1 10,000
My ==Y RT}
n
i=l1

ploo
My =— RT;

(23)

The first two moments of the ECDF approx-
imating the distribution of RT%/n; can be determined
analogously, and equating these with the first two
moments of the F,, ,, distribution (Johnson and Kotz,
1970), we find:

M1 o ny
n =2
24
My mm+2) -
ny o on(ny —2)(ny —4)
Solving n; and n, from these equations gives:
4M, — 2M3
ny = % (25)
My — M? —2M,
-2
m= M= (26)
n

Further Specifics

For n> 50, we find n, to increase rapidly. Since
F, », converges to Xf” /ny if n, — oo (for fixed n; and
Xgl /n; being the distribution of a statistic having a
chi-square distribution with n; degrees of freedom,
divided by n;), we approximate the distribution of
RT? by the Xﬁl distribution for sample sizes larger
than 50. Following the same idea as above, n; is
determined from:

ni =M1 (27)

For n<20, we run into the problem that the
proposed approximation is inadequate in the remote
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Figure 10. Probability plot for n =20 (left) and n =60 (right).

tails (beyond the 0.99 quantile); the remote tails of
the distribution of R7%/n; are heavier than those of
the approximating F-distribution. These heavy tails
have a large impact on the moments of the ECDF;
consequently, the found values for n; and n, do not
give the best approximation on the relevant domain,
namely up to the 0.99 quantile. Ideally, we would
approximate the ECDF truncated at the 0.99 quantile
by an F-distribution truncated at the 0.99 quantile.
We would then equate moments of these truncated
distributions. Unfortunately, it seems not feasible to
obtain expressions for the moments of the truncated
F-distribution.

Another approach to circumvent the problem is
inspired by the following idea. Writing RT, (2[) for the
ordered RT?, we note that the points
(RTZ /ni, F, ), %)), i=1,...,9900 would lie on
the line y = x if the approximation were perfect (up to
the 0.99 quantile). Using this idea;

9900

. 2
B ] 2 i—1/2
nl,nz_argrl}?’ll)r;; (RT(I-)/UI F, ., (l0,000)) (28)

i.e., n; and n, are chosen so that they minimize the L?
distance from the line y=x. In practice, n; and n,
were found taking the values of Eq. (25) and Eq. (26)
as starting points for a numerical routine minimizing
Eq. (28).

The reported values in Table 1 were determined
from Eq. (28) (forn=35, 6, 8, 10, 15, and 20), Eq. (25),
and Eq. (26) (for n= 30, 40, and 50), or Eq. (27) (for
n==60, 70, 100, and 150). The adequacy of the
proposed approximation for =20 and n=060 is
demonstrated in Fig 10, which shows the probability
plots (up to the 0.99 quantile) for the ECDF. It

displays the points (RT(ZI.) /nFy }nz {5})/0%)). The indices

on the y-axis are F, ,, (v) instead of y. The plots are
representative of the plots for other values of n and
they show that the approximation is accurate up to
the 0.97 quantile and fairly accurate up to the 0.99
quantile.
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