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The precision of a measurement system is the consistency across multiple
measurements of the same object. This paper studies the evaluation of the precision
of measurement systems that measure on a bounded ordinal scale. A bounded ordinal
scale consists of a finite number of categories that have a specific order. Based on an
inventory of methods for the evaluation of precision for other types of measurement
scales, the article proposes two approaches. The first approach is based on a latent
variable model and is a variant of the intraclass correlation method. The second
approach is a non-parametric approach, the results of which are, however, rather
difficult to interpret. The approaches are illustrated with an artificial data set and an
industrial data set. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Measurement system analysis (MSA) seeks to describe, categorize, and evaluate the quality of
measurements, improve the usefulness, accuracy, precision, and meaningfulness of measurements,
and propose methods for developing new and better measurement instruments1. In this article we

study the evaluation of precision (or consistency) of measurement systems. By precision we mean the extent to
which we find similar results if we measure (the properties of) the same object multiple times with the same or
comparable measuring instruments.

How precision is addressed depends on the field where the measurement system is used. Industrial statistics
concentrates on measurement spread2,3, whereas in psychometrics the focus is on reliability4. In both fields
the precision of the measurement is assessed by means of an experiment using the fundamental principles of
experimental design. In this paper we consider a simple design where m repeated measurements are obtained
from n objects with the same measurement system in randomized order. The observations are denoted Xij ,
i = 1, . . . , n, j = 1, . . . , m.

A scale is the target range of a measurement system. An ordinal scale is a countable set with a defined
order but without a distance metric. In a bounded ordinal scale the number of categories is finite. A discrete
scale is an ordinal scale with a distance metric imposed. The concept of distance distinguishes an ordinal scale
from a discrete scale. For both scales a statement of the form ‘a < b’ makes sense (as opposed to nominal
scale), but, unlike on discrete scales, ‘a − b’ has no meaning on an ordinal scale. Examples of bounded ordinal
measurements are quality judgments of the form ‘good’, ‘mediocre’, or ‘bad’, and ratings in classes I, II, III,
and IV.
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This article concentrates on the evaluation of the precision of bounded ordinal measurement systems. First, an
overview is given of existing methods used in the assessment of precision for other measurement scales.
Based on these methods, two approaches are developed for bounded ordinal measurements. These approaches—
a latent variable approach and a non-parametric approach—are illustrated with an artificial data set and an
industrial example.

2. INVENTORY OF CURRENT METHODS

2.1. Intraclass correlation coefficient

The social sciences interpret precision as reliability, which is the degree of object variation relative to the total
observed variation or, equivalently, the correlation among multiple measurements of the same object. Reliability
is often expressed in the form of an intraclass correlation coefficient (ICC)5,6.

The observations Xij are generally assumed to follow the model

Xij = Zi + εij (1)

with Zi ∼ N (µp, σ 2
p ) the true value of object i and εij ∼ N (0, σ 2

e ) the stochastic measurement error. The model
states that the distribution of the measurement error is symmetrical around and independent of the object’s true
value.

The ICC is the correlation between different measurements Xij and Xik of a single object i. Under model (1)
we have

ICC = Cov(Xij , Xik)√
Var(Xij ) · Var(Xik)

= σ 2
p

σ 2
p + σ 2

e
(2)

ICC expresses measurement reliability as can be seen from the right-hand side of (2): a ratio of the variance
of interest over the total variance. Under model (1), ICC can only assume values in the interval [0, 1],
1 corresponding to perfect reliability and 0 to a measurement system which is no more consistent than chance.

One-way analysis of variance gives the estimates for the variance components in (2). Denoting by MSw and
MSb the within and between groups mean squares, respectively, a biased but consistent estimator of ICC is6

ÎCC = MSb − MSw

MSb + (m − 1)MSw

Note that this estimate is only acceptable if the objects i = 1, . . . , n are sampled randomly from the
population. If this is not the case, σ 2

p should be estimated from a historical sample (in practice, it will be easier
to estimate σ 2

total = σ 2
p + σ 2

e , because in general it is not possible to obtain measurements without measurement
spread).

2.2. Gauge R&R

Industrial statistics interprets precision as measurement spread2,3,7. The model underlying the Gauge R&R
equals model (1) of the ICC method. The measurement spread is the standard deviation σe of repeated
measurements of a single object. In standard Gauge R&R studies this standard deviation is split into a component
due to the measurement system itself (repeatability) and a component due to additional sources of variation
such as operators (reproducibility). The measurement spread is compared to the process spread (including
measurement spread), as is done by the Gauge R&R statistic8:

Gauge R&R = σe

σtotal
(3)

with σtotal =
√

σ 2
p + σ 2

e .
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The intraclass correlation coefficient and the Gauge R&R are essentially the same:

ICC = 1 − (Gauge R&R)2

The main difference is that ICC expresses the ratio of measurement spread and total spread in terms of
variances and the Gauge R&R in terms of standard deviations. Proportions suggest that the numerator plus its
complement add up to the denominator. This holds for variances (σ 2

e + σ 2
p = σ 2

total), but not for standard

deviations (σe + σp �= σtotal, in general), which makes ICC the more natural choice (Wheeler9 makes a similar
observation).

An alternative evaluation of the measurement system is to consider 5.15 σe. This value represents the width
of a 99% confidence interval on an object’s true value, given a single measurement. Often, this interval is
compared to the distance between the tolerance limits on the characteristic (the so-called P/T ratio). A third
alternative is to determine the discriminatory power of the measurement system. Suppose we have two
objects and corresponding measurements X1 and X2. It can be decided that the two objects are not identical
(with 99% confidence) if |X1 − X2| > 2.575

√
2 σe. Objects whose true values are more than 2.575

√
2 σe apart

will be distinguished in this sense with at least 50% probability. Taking 5.15 σtotal to represent the range of the
measured products, the measurement system can distinguish between

√
2 σtotal/σe categories.

2.3. Kappa

A concept that is related to precision is agreement. Two measurements of an object agree if they are identical.
Cohen10 introduces a measure of agreement called the kappa, which is nowadays frequently used to evaluate
measurement systems on nominal scales. The kappa, denoted κ , is a measure of agreement corrected for
agreement by chance, which has the form

κ = Po − Pe

1 − Pe
(4)

Here Po is the observed proportion of agreement and Pe the expected proportion of agreement. The kappa attains
the value 1 when there is perfect agreement, 0 if all observed agreement is due to chance and negative values
when the degree of agreement is less than is to be expected on the basis of chance.

For the simple case where m = 2 (two measurements per object) the terms in (4) are computed as10

Po =
∑

k

p1,2(k, k) and Pe =
∑
k

p1(k)p2(k)

where k ranges over all categories of the scale. Here Po is the observed proportion of objects with agreeing
measurements 1 and 2 and p1,2(k, k) denotes the proportion of objects that have been categorized as k by
measurements 1 and 2. Pe is the expected proportion of agreement based on independence of measurements 1
and 2. p1(k) and p2(k) denote the marginal proportions of both measurements and categories k. For m ≥ 3
generalizations are given in the literature (see Conger11).

2.4. Non-parametric methods

If one does not want to make distributional assumptions as in model (1), one may resort to non-parametric
methods12 such as Kendall’s tau13. Precision is interpreted as consistency between different rankings of a series
of objects. Let ri1 and ri2 be the rank numbers of object i in two rankings 1 and 2. Let P and Q be the numbers
of agreeing and opposite rankings; that is,

P = #{h, i : (rh1 < ri1, rh2 < ri2) or (rh1 > ri1, rh2 > ri2)}
Q = #{h, i : (rh1 < ri1, rh2 > ri2) or (rh1 > ri1, rh2 < ri2)} (5)
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Then τ is the difference between P and Q divided by the absolute value of their maximum difference (the total
number of pairs one can form). This is

τ = P − Q

n(n − 1)/2

τ measures the rank correlation between two rankings. As a non-parametric analogue to the usual product
moment correlation coefficient it represents the extent to which there exists a monotonous relationship between
two variables13. One speaks of a perfect positive monotonous relationship when for every pair of objects i and
j we have (ri1 − rj1)(ri2 − rj2) > 0. Negative monotony is defined analogously. τ can only assume values
in the interval [−1, 1], where 1 corresponds to a perfect positive monotonous relationship, −1 to a negative
relationship and 0 to no relationship at all (i.e. a random ranking process).

Another non-parametric measure of rank correlation is Spearman’s ρs
13. At the core is the sum of squares of

the differences in rank number of two rankings for each individual object. This is scaled such that ρs equals 1
in the case of identical rankings and −1 if the rankings are each other’s reverse:

ρs = 1 − 6
∑

i (ri1 − ri2)
2

n3 − n

ρs treats the ranks as if they were the true units of measurement, assuming a discrete scale instead of an ordinal
one.

τ and ρs are concerned with correlation between two rankings. For the case involving m > 2 rankings,
Kendall13 defined his coefficient of concordance as

W =
∑n

i=1(Ri − 1
2m(n + 1))2

1
12m2(n3 − n)

Here rij is the ranking of object i by ranking j and Ri = ∑m
j=1 rij . The rationale underlying this definition is

the analogy to the analysis of variance. This is also its criticism, as rankings are not independent of each other,
but are assigned in conjunction with each other. Therefore, it has been proposed to use the average τ of all
possible pairs of measurements instead.

2.5. Other alternatives

Alternative methods, which we do not discuss in this paper, can be found in Dunn12, Feldstein and Davis14,
Agresti15, Uebersax and Grove16 and Vanleeuwen and Mandabach17.

3. MSA FOR BOUNDED ORDINAL DATA

Modifying the methods discussed in the preceding section for application with bounded ordinal data, we develop
two main approaches. The choice between them relates to the distinction between the situation where one deals
with a scale that is intrinsically bounded and ordinal, and the situation where one is in fact dealing with a
continuous variable that is mapped by the measurement system onto a bounded ordinal scale. In the first situation
one cannot use methods based on standard deviations and correlations, because these methods assume a distance
metric on the measurement scale. One has to resort to non-parametric methods. In the second situation, the
ordinal scale can be equipped with a distance metric, which it inherits via the map (formed by the measurement
system) from the underlying continuous scale. This enables the use of methods based on standard deviations and
correlations (ICC and Gauge R&R). The underlying continuous scale need not be known and the object’s true
value is treated as a latent variable. The kappa method will be shown to reduce to a variant of the ICC method.
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3.1. Modification of the ICC method

As shown in Section 2.2 the ICC method is essentially the same as the Gauge R&R method and for this reason
we do not discuss the Gauge R&R method separately.

When trying to apply the ICC method to bounded ordinal data, we come across two problems, which relate
to:

(1) a distance metric for the measurement scale;
(2) distributional properties of the measurement error.

Problem 1. Ordinal scales only have an order defined, not a distance metric. The ICC method, however,
makes use of standard deviations and correlations, which are only defined for measurement scales for which
there is a well-defined distance metric. Not until the ordinal scale is extended with a metric can we apply ICC
type methods. In effect, this extension transforms an ordinal scale into a discrete scale.

Problem 2. The standard ICC method (as well as the Gauge R&R method) assumes that: (a) the measurement
error is symmetrically distributed around an object’s true value; and (b) that this distribution is the same,
whatever the true value is (as reflected in model (1)). Both assumptions (a) and (b) are natural in the study
of measurement error and we wish to introduce similar assumptions for the bounded ordinal case. Neither
assumption can, however, be retained for bounded scales in a straightforward form: the measurement error of
objects close to a bound will be skewed away from the bound.

In order to adapt the ICC method for use with bounded ordinal data, it is unavoidable to make bold
assumptions on both issues. It appears possible to derive both a distance metric and a distribution for the
measurement error if one is prepared to assume that underlying the measurements there is a continuous variable
(the ‘true’ value of the object). Below, we study how to adapt the ICC method in this situation for use first
with ordinal but unbounded data, and then for use with bounded ordinal data. If one is not willing to assume a
continuous true value that underlies the measurements, one has to resort to non-parametric methods.

3.1.1. ICC for unbounded ordinal data

Let Z denote the true value of the measured property of an object. We assume that Z ∈ R. Moreover, we assume
that Z has a normal distribution:

Z ∼ N (µp, σ 2
p ) (6)

Z is not observed; instead we measure an ordinal variable X, which assumes a value in D. D is an infinite
countable set, whose categories are labelled . . . , 1, 2, 3, . . . . By reporting X instead of Z, the measurement
system maps R onto D and adds a stochastic component due to measurement error. The map RD : R → D,
RD(Z) = 	Z
 represents a measurement system which is not subject to measurement error (	.
 is the ceiling
function). Its reverse is DR(k) = k − 1

2 , for k ∈ D. The measurement error in X can be modelled by specifying
the distribution of X conditional on Z, which is of the form P(X = k | Z) = pk(Z), k ∈ D, with pk dependent
on the true value Z of the measured object.

In order to apply a method analogous to the ICC method, we have to define a distance metric on D. We propose
to interpret the categories of D as equidistant by taking the distance between any two successive categories as 1.
In this way, D inherits the distance metric of the domain of Z, in that |k − �|D = |DR(k) − DR(�)|, for any
k, � ∈ D.

Furthermore, we have to make assumptions about the distribution of X. We propose to assume that

pk(Z) =
∫ DR(k+1/2)

t=DR(k−1/2)

fµ=Z;σe(t) dt (7)
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with fµ;σ the density of the normal distribution with mean µ and standard deviation σ . Thus, the distribution of
X given Z is a discretized form of a normal distribution. Combining (6) and (7) we find

P(X = k) =
∫ ∞

t=−∞
pk(t)fµp;σp(t) dt

=
∫ DR(k+1/2)

u=DR(k−1/2)

f
µp;

√
σ 2

p +σ 2
e
(u) du (8)

In order to understand intuitively the assumption (7), one could think of a measurement error ε ∈ R, which has
a N (0, σ 2

e ) distribution. ε is added to the true value Z and then discretized: X = RD(Z + ε), which results
in the distribution given in (8). Thus, (8) is the discrete analogue of (1), and we have retained symmetry of
measurement error and independence of the distribution of the measurement error of the true value Z. Analogous
to the standard ICC method, we define measurement reliability as

ICC = σ 2
p

σ 2
p + σ 2

e
(9)

In order to estimate ICC we have repeated measurements Xi1, Xi2, . . . , Xim of objects i = 1, 2, . . . , n.
Following standard ICC methodology, one would estimate ICC from a ratio of mean squares. For discretized
data, mean squares have, however, a bias. Correcting for this bias (see the derivation in Appendix A), the
estimate becomes

ÎCC = MSb − MSw + (m − 1)/12 m

MSb + (m − 1)MSw − (m2 − m + 1)/12 m
(10)

3.1.2. ICC for bounded ordinal data
Next, we study how to modify the ICC in the case of bounded ordinal data. We assume that D is a finite set,
whose categories are labelled 1, 2, . . . , a. We could assume a bounded domain for the true value Z as well.
This would, however, make it impossible to retain the assumption of the distribution of the measurement spread
being independent of and symmetrical around the true value: for values close to the bounds, the measurement
spread would be skewed away from the bound, thus violating both assumptions. Instead, we retain R as the
domain of the true value Z and define the map LRD : R → D,

LRD(Z) =
⌈

a exp(Z)

1 + exp(Z)

⌉
(11)

Its reverse (for k ∈ D) is

LRD(k) = log

(
k − 1/2

a − k + 1/2

)
(12)

LRD is similar to the logistic transformation that is used in logistic regression. For Z we retain model (6). For the
measurement error we have

P(X = k | Z) = pk(Z) =
∫ LRD(k+1/2)

t=LRD(k−1/2)

fµ=Z;σe(t) dt (13)

An equation similar to (8) could be derived. In the domain of Z, the distribution of the measurement spread
is independent of and symmetrical around an object’s true value. In the centre of the domain, the map LRD
approximates RD. Towards the bounds, more and more of the R domain is condensed in classes of D and the
extreme classes of D cover all values of Z smaller or larger than a certain value. In our opinion, this behaviour
reflects how bounded ordinal measurement scales in reality are often implicitly defined: they are distinctive in
a relevant subdomain of true values, whereas values more to the extremes are combined in the two extreme
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Figure 1. Relation between R and D

categories, which cover all values beyond a certain lower and upper point. The distribution of the measurement
error is illustrated in Figure 1. The graph has D = {1, . . . , 6} on its x-axis and R on its y-axis. The curve
shows how values in R and D are related. The histogram shows the distribution pk(Z), k = 1, . . . , a, of a
measurement X for a single object. This distribution can be derived by imagining a true value Z on the y-axis
to which a normally distributed and zero-mean error is added (this hypothetical distribution is indicated by the
Gaussian curve on the y-axis). The graph on the right shows the distribution of X given an object that has a
large true value Z. Note that this model implies that the measurement system is more consistent in the extreme
classes, meaning that the really good and really bad objects can be judged with high precision.

The measurement system’s reliability is defined as in (9). Due to the nonlinearity of LDR, mean squares
give heavily biased estimators for the variances in (9). To derive suitable estimators, we consider the statistics
Nik = (#Xij , j = 1, . . . , m : Xij = k), for i = 1, . . . , n and k ∈ D. Regarding the true values Zi as fixed for
the moment, and given that for a single product i the tuple (Ni1, . . . , Nia) has a multinomial distribution, we
can compute the log-likelihood L.

L =
n∑

i=1

log P(Ni1 = ni1, . . . , Nia = nia)

=
n∑

i=1

log

(
m!

ni1! · · · nia !
)

+
n∑

i=1

a∑
k=1

nik log(�(A(+)) − �(A(−)))

with � the cumulative standard normal distribution function,

A(+) = LDR(k + 1/2) − Zi

σe
and A(−) = LDR(k − 1/2) − Zi

σe

We find estimates for Z1, . . . , Zn and σ 2
e from

Ẑ1, . . . , Ẑn, σ̂ 2
e,ml = arg max

n∑
i=1

a∑
k=1

nik log(�(A(+)) − �(A(−)))

In order to correct for the bias that maximum likelihood estimators are subject to in general, we work with

σ̂ 2
e = m

m − 1
σ̂ 2

e,ml (14)

Next, we estimate σ 2
p by

σ̂ 2
p = 1

n − 1

n∑
i=1

(
Ẑi − 1

n

n∑
i=1

Ẑi

)2

− σ̂ 2
e

m
(15)
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The sample ICC is given by

ÎCC = σ̂ 2
p

σ̂ 2
p + σ̂ 2

e

An alternative representation of the results is to report for objects with true values Zk = LDR(k), k =
1, . . . , a, the distribution of the measurements p�(Zk), which is computed by substituting σ̂e for σe in (13).
These p�(Zk) give the probability that an object that should be rated k is in fact rated � = 1, 2, . . . , a.

3.2. Modification of the kappa method

The main problem of the kappa method when dealing with bounded ordinal data is that it only uses the value
information. Values are interpreted as mere labels, ignoring the order information. In effect, ordinal data are
downgraded to nominal data, and therefore the kappa method does not take along in its evaluation of an ordinal
measurement system, one of the system’s most important aspects.

It has been suggested18 that instead one should use the weighted κ (of which κ is a special case) when
dealing with ordinal data. This statistic takes into account that some types of disagreement may be considered
more important than others, and that this should be reflected by assigning weights. For the weighted kappa the
expected and observed proportion of agreement are defined as:

Po =
a∑

k,�=1

w(k, �)p1,2(k, �) and Pe =
a∑

k,�=1

w(k, �)p1(k)p2(�)

with 0 ≤ w(k, �) ≤ 1, and w(k, k) = 1. Krippendorff19 proposed quadratic weights:

w(k, �) = 1 − (k − �)2

(a − 1)2 for k and � in D

In effect these weights define a distance metric on D. Based on quadratic weights, and assuming model (1) for
the (ordinal) data, weighted κ is a biased estimate of ICC as defined in (2). Thus, the method reduces to a variant
of the ICC method.

3.3. Modification of non-parametric methods

By studying Kendall’s τ in the situation of a bounded ordinal scale, we apply the theory of rankings to ratings.
The main difference is that for rankings it is not possible for two objects to fall into the same category (so called
‘ties’). Ratings can be regarded as rankings, with the complication of ties (which are usually unavoidable for
ratings). When dealing with ratings, they should be converted to rank numbers. To obtain rank numbers from
the ratings Xij , order for each j the Xij , i = 1, . . . , n, from small to large, where Xij that are equal are left in
an arbitrary order. Next, let rij , i = 1, . . . , n be the rank numbers of the ordered Xij , where rank numbers for
ties are averaged. This is expressed as

rij =
Xij −1∑
k=1

Mjk + (1 + Mj,Xij )/2

with Mjk = (#Xij , i = 1, . . . , n : Xij = k), for j = 1, . . . , m and k ∈ D. When ties are present, τ should be
modified as follows:

τ = P − Q√
n(n − 1)/2 − T1

√
n(n − 1)/2 − T2
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Table I. Artificial dataset

1 2 3 4 5 6 1 2 3 4 5 6

1 3 2 3 2 2 3 16 4 3 3 4 4 3
2 3 3 4 4 4 4 17 3 3 3 3 3 3
3 4 3 3 4 3 3 18 4 4 4 4 4 4
4 2 2 3 3 2 3 19 2 3 2 2 3 3
5 3 3 2 3 2 2 20 3 3 4 3 3 4
6 4 4 4 4 4 4 21 2 3 2 2 2 3
7 3 3 3 4 3 4 22 2 1 2 2 2 2
8 2 2 2 2 3 2 23 3 3 2 3 3 2
9 3 2 2 3 2 2 24 4 4 3 4 4 4
10 2 2 2 2 2 2 25 2 2 2 3 2 1
11 2 2 2 3 2 2 26 4 4 3 4 4 3
12 3 3 3 4 3 3 27 2 2 2 2 2 2
13 4 4 4 5 4 5 28 3 3 2 2 3 2
14 3 3 3 3 3 3 29 2 2 2 2 1 2
15 4 4 3 3 4 3 30 4 4 4 5 4 3

where

Tj = 1

2

a∑
k=1

Mjk(Mjk − 1), for j = 1, 2

P and Q are defined as in (5), which implies that ties are not counted.
Likewise, W modified for the presence of ties is equal to

W =
∑n

i=1(Ri − (1/2)m(n + 1))2

(1/12)m2(n3 − n) − (m/12)
∑m

j=1
∑a

k=1(M
3
jk − Mjk)

(16)

with, as before, Ri = ∑m
j=1 rij .

4. EXAMPLES

4.1. Artificial dataset

We created data Xij , i = 1, . . . , 30, j = 1, . . . , 6, on a bounded ordinal scale D = {1, . . . , 5}. The data are
realizations of the model Xij = LRD(Zi + εij ), with Zi ∼ N (0, 0.49) and εij ∼ N (0, 0.09) (see Table I).
The true ICC equals 0.49/(0.49 + 0.09) = 0.845.

Using (14) and (15) we find σ̂ 2
e = 0.082 and σ̂ 2

p = 0.43. Consequently, ICC is estimated as 0.839. Another
way to present the results is by reporting a table such as Table II. This table displays the distribution of the
measurements X given the true value Z for Z = LDR(k), k = 1, . . . , 5. For example, an object that should be
rated in class 2 has a 3% probability to be rated 1, 91% to be rated 2 and 6% to be rated 3.

To demonstrate the effect of the proposed map (12), we analyse the data using another map, namely

PDR(k) = �−1
(

k − 1/2

a

)
(17)

We find σ̂ 2
e = 0.030, σ̂ 2

p = 0.16 and ÎCC = 0.842 (note that the estimated variances cannot be compared to 0.49
and 0.09 in the model, since choosing a different map in the analysis implies a different scale for the underlying
domain of Z). The distribution of the measurements X is estimated as specified in Table III.

Kendall’s τ can only be computed for pairs of columns, but it has been suggested to use the average of the
pairwise τ s as a measure of precision. Computing τ for all pairs of columns we find: (1, 2) 0.79; (1, 3) 0.66;
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Table II. Distribution of X given Z

True value Measurement X

Z Class 1 2 3 4 5

−2.20 1 1.00 0.00 0.00 0.00 0.00
−0.85 2 0.03 0.91 0.06 0.00 0.00

0.00 3 0.00 0.08 0.84 0.08 0.00
0.85 4 0.00 0.00 0.06 0.91 0.03
2.20 5 0.00 0.00 0.00 0.00 1.00

Table III. Distribution of X given Z, based on analysis using PDR

True value Measurement X

Z Class 1 2 3 4 5

−1.28 1 0.99 0.01 0.00 0.00 0.00
−0.52 2 0.03 0.91 0.06 0.00 0.00

0.00 3 0.00 0.07 0.86 0.07 0.00
0.52 4 0.00 0.00 0.06 0.91 0.03
1.28 5 0.00 0.00 0.00 0.01 0.99

Table IV. Printer assembly data

1 2 3 4 5 6 1 2 3 4 5 6

1 4 4 4 4 2 4 14 2 1 1 2 1 1
2 1 4 2 3 3 4 15 4 4 3 4 4 1
3 1 1 1 2 2 4 16 1 4 3 3 4 4
4 2 2 2 4 2 4 17 1 1 1 2 3 4
5 1 1 3 4 2 4 18 1 2 1 1 4 2
6 1 2 2 2 4 1 19 1 1 1 1 4 4
7 4 4 3 4 1 4 20 4 3 3 4 4 4
8 2 2 2 3 3 4 21 3 4 2 3 4 4
9 2 4 4 4 3 4 22 2 1 1 3 4 4
10 1 1 2 2 2 4 23 2 2 1 3 4 4
11 4 4 3 4 2 4 24 4 2 2 3 4 2
12 2 4 1 1 4 4 25 1 4 1 1 3 4
13 1 1 2 2 4 3 26 1 1 2 2 4 4

(1, 4) 0.72; (1, 5) 0.77; (1, 6) 0.54; (2, 3) 0.60; (2, 4) 0.63; (2, 5) 0.81; (2, 6) 0.63; (3, 4) 0.70; (3, 5) 0.66;
(3, 6) 0.83; (4, 5) 0.65; (4, 6) 0.56; (5, 6) 0.62. The average of these values is 0.68. W , computed from (16), is
0.78.

4.2. Printer assembly data

The second example is a real dataset from a printer assembly line. After a printer has been assembled, its quality
is tested by printing a grey area. This sample is visually inspected on uniformity by the operators. The samples
are judged as good, acceptable, questionable or rejected. We code these categories as 1, 2, 3 and 4 respectively.
In order to evaluate this inspection procedure, 26 samples (grey areas) were collected, which were judged six
times. The data are given in Table IV.

We can imagine that underlying the operator judgments there is some continuous property uniformity, for
which there is no known measurement method. We assume that this unobserved property has an unbounded
domain, or at least that the bounds are removed far enough from the range of interest to make them irrelevant.
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Table V. Printer assembly data: distribution of X given Z

True value Measurement X

Z Class 1 2 3 4

−1.95 1 0.66 0.17 0.10 0.07
−0.51 2 0.39 0.21 0.19 0.21

0.51 3 0.21 0.19 0.21 0.39
1.95 4 0.07 0.10 0.17 0.66

Analysing the data, we find σ̂ 2
e = 4.06, σ̂ 2

p = 0.867 and ÎCC = 0.18 (using (17) instead of (12) we find the same
value). Both from these results and from their implication as presented in Table V (probabilities being spread
over several categories), we conclude that the inspection method is completely inadequate.

If one does not want to assume a continuous underlying variable, one could calculate W . Formula (16) yields
0.34. For each pair of columns one could compute τ , which yields: (1, 2) 0.45; (1, 3) 0.37; (1, 4) 0.59; (1, 5)

−0.07; (1, 6) −0.04; (2, 3) 0.44; (2, 4) 0.36; (2, 5) 0.02; (2, 6) 0.12; (3, 4) 0.72; (3, 5) −0.17; (3, 6) 0.08;
(4, 5) −0.26; (4, 6) 0.17; (5, 6) −0.22. The average value is 0.17.

5. DISCUSSION AND CONCLUSIONS

As is illustrated in the examples, τ and W are hard to interpret because it is difficult to assess the real-life
implications of specific values. In part this is due to the fact that the statistics τ and W are not defined
as estimators: they are given as sample statistics without a specified link to a parameter of the population
distribution. These interpretation problems seem inherent to non-parametric methods. The modified ICC
method, on the other hand, provides an easily interpretable evaluation. In particular, Tables II, III and V clearly
demonstrate how a measurement system behaves in practice.

In the analysis of the printer assembly data (Table IV) it can be noted that the ratings in columns 1, 2, 3
and 4 have a moderate consistency, and that the ratings in column 5 and 6 are inconsistent mutually and with
all other ratings (as can be concluded from the τ values which have been computed for all pairs of columns).
For someone who is willing to improve the measurement system, this is an important indication. The ratings in
columns 1 and 2 were made by a single rater, as were the ratings in columns 3 and 4, and 5 and 6. The ICC
method facilitates only an overall evaluation. The possibility of a separate inter- and intra-rater evaluation would
be a valuable extension of the method.

The existing methods for measurement system analysis cannot cope with measurement systems that measure
on a bounded ordinal scale. The article proposes two approaches for this situation. The first approach requires
bold assumptions. It defines a distance metric for the ordinal scale and a class of distribution functions in
which the distribution of the measurement error is assumed. Both assumptions are derived from a latent variable
model. Estimating the parameters of the distribution of the measurement error, precision can be evaluated as
an intraclass correlation coefficient or from the estimated distribution of the measurement error. Given that
the assumptions are approximately justified, the method is easily interpretable. If the assumptions cannot be
justified, one has to resort to non-parametric methods, although the results of these are hard to translate into
tangible implications.
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APPENDIX A. BIAS OF MEAN SQUARE ESTIMATORS WITH DISCRETE DATA

We study a sequence of random variables Zi , i = 1, 2, . . . , n which have a normal distribution with mean µ

and variance σ 2. The measurement system maps Zi onto a discrete scale with class width 1. Values of Zi in the
interval [k − 1

2 , k + 1
2 ) are mapped onto k, k = . . . , −1, 0, 1, 2, . . . . The discretized version Xi of Zi has a

discrete distribution given by

P(Xi = k) =
∫ k+1/2

k−1/2
fµ;σ (t) dt, k = . . . , −1, 0, 1, 2, . . .

Estimating µ by X̄ = (1/n)
∑n

i=1 Xi , we study the bias of S2 = (1/(n − 1))
∑n

i=1

(
Xi − X̄

)2
as an estimator

of σ 2. It can be shown that this bias is given by

ES2 − σ 2 =
∞∑

k=−∞
(k − µ)2

(
�

(
k + 1/2 − µ

σ

)
− �

(
k − 1/2 − µ

σ

))
− σ 2 (A1)

The bias as given by formula (A1) above depends on σ and trunc(µ). For various values the bias is given
in Table AI. From the perspective of an experimenter, trunc(µ) is uniformly distributed in [0, 1). For small
σ 2 (coarse resolution) the expected bias is 0.083. For larger σ 2 (fine resolution) the bias approximates 0.083
regardless of trunc(µ). The value 0.083 is 1

12 of Sheppard’s correction20. We see that, irrespective of σ ,

ES2 ≈ σ 2 + 1
12

It follows that MSw − 1
12 is an unbiased estimator of σ 2

e .
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Table AI. Bias of S2 for various values of σ and trunc(µ)

σ

trunc(µ) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.006 0.052 0.075 0.082 0.083 0.083 0.083 0.083
0.1 0.021 0.058 0.077 0.082 0.083 0.083 0.083 0.083
0.2 0.062 0.074 0.081 0.083 0.083 0.083 0.083 0.083
0.3 0.110 0.093 0.086 0.084 0.083 0.083 0.083 0.083
0.4 0.148 0.109 0.090 0.084 0.083 0.083 0.083 0.083
0.5 0.162 0.115 0.091 0.085 0.083 0.083 0.083 0.083
0.6 0.148 0.109 0.090 0.084 0.083 0.083 0.083 0.083
0.7 0.110 0.093 0.086 0.084 0.083 0.083 0.083 0.083
0.8 0.062 0.074 0.081 0.083 0.083 0.083 0.083 0.083
0.9 0.021 0.058 0.077 0.082 0.083 0.083 0.083 0.083
1.0 0.006 0.052 0.075 0.082 0.083 0.083 0.083 0.083

Since mX̄i· is normally distributed with mean mµ and variance m2σ 2
p + mσ 2

e and since mX̄i has the same
resolution as the Xij , we find

E(mMSb) = m2σ 2
p + mσ 2

e + 1
12

Taking suitable linear combinations of MSb and MSw we obtain the estimator in (10).
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